Skip to main content
Log in

UV-Light Catalyzed Reduction of Cr(VI) by Graphene Oxide and its Significance for Cr(VI) Transformation in an Oxisol

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Due to its unique properties, the potential application of graphene oxide (GO) in treating environmental pollution has attracted wide attention. In this study, the UV-light catalyzed photoreduction of Cr(VI) by GO was assessed as well as its adsorption toward Cr(VI), and FTIR and XPS techniques were adopted to reveal the underlying mechanisms. The surfaces of GO were negatively charged across the pH range examined. Therefore, the increase in pH resulted in the decrease in Cr(VI) adsorption due to the enhancement in repulsion between Cr(VI) and GO surfaces. The kinetic studies showed that the Cr(VI) adsorption proceeded quickly during the 0–24 h stage, followed by a slow process until to the end of reaction (96 h). Additionally, the kinetic data could be properly described with the pseudo-first-order rate equation (R2 = 0.9754). With the UV-light irradiation, Cr(VI) reduction in the presence of 0.5 g L−1 GO was observed with the concentration of Cr(VI) decreased from 0.1 mM to zero within 12 h at pH 3.0, while which would be suppressed as the pH increased. The addition of EDTA could enhance the photocatalytic Cr(VI) reduction due to the consumption of the photogenerated holes (h+), leaving more Cr(III) species present in solution. The generation of h+ was further confirmed by the complete photodegradation of 4-CP during 48 h. Moreover, the changes in FTIR and XPS spectrum of GO before and after reaction indicated the oxidization of epoxy and hydroxyl groups by holes or reduction by electrons was involved in the photoreaction. The photoreduction of Cr(VI) could was also observed in an oxisol with the existence of GO, with the disappearance of 0.1 mM of aqueous Cr(VI) at pH 4.40 after 36 h. The results above could enhance our understanding on the essence of photoreactivity of GO, and indicated that the potential release of GO into soil environments would be helpful to eliminate the risk posed by Cr(VI) through the UV-light irradiated photocatalytic reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4, 5731–5736.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Polyzois, T., Golia, E. E., Spyridon, A., & Petropoulos, S. A. (2017). Hexavalent chromium availability and phytoremediation potential of Cichorium spinosum as affect by manure, zeolite and soil ageing. Chemosphere, 171, 729–734.

    Article  CAS  Google Scholar 

  • Bartlett, R. J., & James, B. R. (1999). Chromium. In D. L. Sparks (Ed.), Methods of soil analysis (pp. 683–701). Madison: Soil Sci Soc Am.

    Google Scholar 

  • Beukes, J. P., Du Preez, S. P., Van Zyl, P. G., Paktunc, D., & Cramer, M. (2017). Review of Cr(VI) environmental practices in the chromite mining and smelting industry—relevance to development of the Ring of Fire, Canada. Journal of Cleaner Production, 165, 874–889.

    Article  CAS  Google Scholar 

  • Cai, Y. Q., & Feng, Y. P. (2016). Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Progress in Surface Science, 91, 183–202.

    Article  CAS  Google Scholar 

  • Cao, X. H., Guo, J., Mao, J. D., & Lan, Y. Q. (2011). Adsorption and mobility of Cr(III)–organic acid complexes in soils. Journal of Hazardous Materials, 192, 1533–1538.

    Article  CAS  Google Scholar 

  • Cardona, M. P., Li, M. Y., Li, W., McCall, J., Wang, D. W., Li, Y., & Yang, C. (2018). The role of graphene as an overlayer on nanostructured hematite photoanodes for improved solar water oxidation. Materials Today Energy, 8, 8–14.

    Article  Google Scholar 

  • Desimoni, E., Malitesta, C., Zambonin, P. G., & Rivière, J. C. (1988). An x-ray photoelectron spectroscopic study of some chromium–oxygen systems. Surface and Interface Analysis, 13, 173–179.

    Article  CAS  Google Scholar 

  • Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. Journal of Hazardous Materials, 250-251, 272–291.

    Article  CAS  Google Scholar 

  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240.

    Article  CAS  Google Scholar 

  • Fernández, P. M., Viñarta, S. C., Bernal, A. R., Cruz, E. L., & Figueroaac, L. I. C. (2018). Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere, 208, 139–148.

    Article  Google Scholar 

  • Gaberell, M., Chin, Y. P., Hug, S. J., & Sulzberger, B. (2003). Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron. Environmental Science & Technology, 37, 4403–4409.

    Article  CAS  Google Scholar 

  • Hao, Y., Ma, C. X., Zhang, Z. T., Song, Y. H., Cao, W. D., Guo, J., Zhou, G. P., Rui, Y. K., Liu, L. M., & Xing, B. S. (2018). Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environmental Pollution, 232, 123–136.

    Article  CAS  Google Scholar 

  • Hsu, H. T., Chen, S. S., Tang, Y. F., & Hsi, H. C. (2013). Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalyis combining cationic exchange membrane. Journal of Hazardous Materials, 248-249, 97–106.

    Article  CAS  Google Scholar 

  • Jiang, X., Nisar, J., Pathak, B., Zhao, J. J., & Ahuja, R. (2013). Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications. Journal of Catalysis, 299, 204–209.

    Article  CAS  Google Scholar 

  • Jiang, B., Wang, X. L., Liu, Y. K., Wang, Z. H., Zheng, J. T., & Wu, M. B. (2016). The roles of polycarboxylates in Cr(VI)/sulfite reaction system: Involvement of reactive oxygen species and intramolecular electron transfer. Journal of Hazardous Materials, 304, 457–466.

    Article  CAS  Google Scholar 

  • Kumar, V., Kim, K. H., Park, J. W., Hong, J., & Kumar, S. (2017). Graphene and its nanocomposite as a platform for environmental application. Chemical Engineering Journal, 315, 210–232.

    Article  CAS  Google Scholar 

  • Lazareva, A., & Keller, A. K. (2014). Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustainable Chemistry & Engineering, 2, 1656–1665.

    Article  CAS  Google Scholar 

  • Lonkar, S. P., Pillai, V., & Abdala, A. (2019). Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity. Applied Surface Science, 465, 1107–1113.

    Article  CAS  Google Scholar 

  • Matsumoto, Y., Koinuma, M., Ida, S., Hayami, S., Taniguchi, T., Hatakeyama, K., Tateishi, H., Watanabe, Y., & Amano, S. (2011). Photoreaction of graphene oxide nanosheets in water. Journal of Physical Chemistry C, 115, 19280–19286.

    Article  CAS  Google Scholar 

  • Meichtry, J. M., Colbeau-Justin, C., Custo, G., & Litter, M. I. (2014). TiO2-photocatalytic transformation of Cr(VI) in the presence of EDTA: Comparison of different commercial photocatalysts and studies by time resolved microwave conductivity. Applied Catalysis B: Environmental, 144, 189–195.

    Article  CAS  Google Scholar 

  • Moffat, T. P., Latanision, R. M., & Ruf, R. R. (1995). An X-ray photoelectron spectroscopy study of chromium-metalloid alloys—III. Electrochimica Acta, 40, 1723–1724.

    Article  CAS  Google Scholar 

  • Parkinson, G. S. (2016). Iron oxide surfaces. Surface Science Reports, 71, 272–365.

    Article  CAS  Google Scholar 

  • Putri, L. K., Tan, L. L., Ong, W. J., Chang, W. S., & Chai, S. P. (2016). Graphene oxide: Exploiting its unique properties towards visible-light-driven photocatalysis. Applied Materials Today, 4, 9–16.

    Article  Google Scholar 

  • Ramsey, J. D., Xia, L., Kendig, M. W., & McCreery, R. L. (2001). Raman spectroscopic analysis of the speciation of dilute chromate solutions. Corrosion Science, 43, 1557–1572.

    Article  CAS  Google Scholar 

  • Raptis, S., Gasparatos, D., Economou-Eliopoulos, M., & Petridis, A. (2018). Chromium uptake by lettuce as affected by the application of organic matter and Cr(VI)-irrigation water: Implications to the land use and water management. Chemosphere, 210, 597–606.

    Article  CAS  Google Scholar 

  • Ribao, P., Rivero, M. J., & Ortiz, I. (2018). Enhanced photocatalytic activity using GO/TiO2 catalyst for the removal of DCA solutions. Environmental Science and Pollution Research, 25, 34893–34902.

    Article  CAS  Google Scholar 

  • Sajjad, S., Khan Leghari, S. A., & Iqbal, A. (2017). Study of graphene oxide structural features for catalytic, antibacterial, gas sensing, and metals decontamination environmental applications. ACS Applied Materials & Interfaces, 9, 43393–43414.

    Article  CAS  Google Scholar 

  • Satuf, M. L., Brandi, R. J., Cassano, A. E., & Alfano, O. M. (2008). Photocatalytic degradation of 4-cholrophenol: A kinetic study. Applied Catalysis B: Environmental, 82, 37–49.

    Article  CAS  Google Scholar 

  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Nabeel, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil–plant system: A review. Chemosphere, 178, 513–533.

    Article  CAS  Google Scholar 

  • Shan, X. L., Guo, X. T., Yin, Y. Y., Mao, Y., & Dong, H. (2017). Surface modification of graphene oxide by goethite with enhanced tylosin photocatalytic activity under visible light irradiation. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 520, 420–427.

    CAS  Google Scholar 

  • Sleigh, C., Pijpers, A. P., Jaspers, A., Coussens, B., & Meier, R. J. (1996). On the determination of atomic charge via ESCA including application to organometallics. Journal of Electron Spectroscopy and Related Phenomena, 77, 41–57.

    Article  CAS  Google Scholar 

  • Sun, M., & Li, J. H. (2018). Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today, 20, 121–137.

    Article  CAS  Google Scholar 

  • Vinuth, M., Naik, H. S. B., & Manjanna, J. (2015). Remediation of hexavalent chromium from aqueous solution using clay mineral Fe(II)-montmorillonite: Encompassing anion exclusion impact. Applied Surface Science, 357, 1244–1250.

    Article  CAS  Google Scholar 

  • Wang, X. X., Fan, Q. H., Chen, Z. S., Wang, Q., Li, J. X., Hobiny, A., Alsaedi, A., & Wang, X. K. (2016a). Surface modification of graphene oxides by plasma techniques and their application for environmental pollution cleanup. The Chemical Record, 16, 295–318.

    Article  CAS  Google Scholar 

  • Wang, X. X., Yu, S. J., Jin, J., Wang, H. Q., Alharbi, N. S., Alsaedi, A., Hayat, T., & Wang, X. K. (2016b). Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Science Bulletin, 61, 1583–1593.

    Article  CAS  Google Scholar 

  • Wang, X. X., Liu, Y., Pang, H. W., Yu, S. J., & Wang, X. K. (2018). Effect of graphene oxide surface modification on the elimination of Co(II) from aqueous solutions. Chemical Engineering Journal, 344, 380–390.

    Article  CAS  Google Scholar 

  • Xie, Y., Chen, C. L., Ren, X. M., Wang, X. X., Wang, H. Y., & Wang, X. K. (2019). Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science, 103, 180–234.

    Article  CAS  Google Scholar 

  • Xiong, T., Yuan, X. Z., Wang, H., Leng, L. J., Li, H., Wu, Z. B., Jiang, L. B., Xu, R., & Zeng, G. M. (2018). Implication of graphene oxide in Cd-contaminated soil: A case study of bacterial communities. Journal of Environmental Management, 205, 99–106.

    Article  CAS  Google Scholar 

  • Yan, J. A., Xian, L. D., & Chou, M. Y. (2009). Structural and electronic properties of oxidized graphene. Physical Review Letters, 103, 086802.

    Article  Google Scholar 

  • Yang, J. W., Zhong, L. Y., & Liu, L. M. (2013). Coupling of tartaric acid-promoted soil dissolution and Cr(VI) reduction in an Oxisol. Journal of Geochemical Exploration, 125, 138–143.

    Article  CAS  Google Scholar 

  • Yoshinaga, M., Ninomiya, H., Aeorangejeb Al Hossain, M. M., Sudo, M., Akhand, A. A., Ahsan, N., Md Alim, A., Khalequzzaman, M. D., Iida, M., Yajima, I., Ohgami, N., & Kato, M. (2018). A comprehensive study including monitoring, assessment of health effects and development of a remediation method for chromium pollution. Chemosphere, 201, 667–675.

    Article  CAS  Google Scholar 

  • Zhou, G. X., Zhong, J., Zhang, H., Hu, X. H., Wu, J. L., Koratkard, N., & Shi, X. M. (2017). Influence of releasing graphene oxide into a clay sand: Physical and mechanical properties. RSC Advances, 7, 18060–18067.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 41671235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiewen Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, J. UV-Light Catalyzed Reduction of Cr(VI) by Graphene Oxide and its Significance for Cr(VI) Transformation in an Oxisol. Water Air Soil Pollut 230, 103 (2019). https://doi.org/10.1007/s11270-019-4161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4161-6

Keywords

Navigation