Growth of Tetraselmis suecica and Dunaliella tertiolecta in Aquaculture Wastewater: Numerical Simulation with the BIO_ALGAE Model

Abstract

This study investigates and compares the uptake of nutrients (nitrogen, phosphorus) and the growth of Tetraselmis suecica and Dunaliella tertiolecta in aquaculture wastewater. The obtained data were used to implement and calibrate the microalgae-bacteria model BIO_ALGAE to simulate the bioremediation and the biomass production of these species. The microalgae were cultivated in batch conditions for 7 days using 120-L vertical column photobioreactors. In the first 4 days, after which the algal density reached a steady state, the average biomass production was 83.7 ± 4.4 mg/L/day for T. suecica and 56.4 ± 5.1 mg/L/day for D. tertiolecta. The two species were able to remove more than 96% of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP). The total lipid content was analyzed at the end of the 7 days; T. suecica and D. tertiolecta had different lipid content: 75.8 ± 1.6% and 23.2 ± 2.0%, respectively. The BIO_ALGAE model fits very well the experimental data of both species in terms of biomass and nutrient uptake and could be an effective tool to predict the production of microalgae using aquaculture wastewater as growth media, obtaining at the same time the removal of nutrients from wastewater and the production of biomass to be used as feed. In particular, this mathematical model can be applied to forecast the performance under different operating conditions, for the design, optimization, and control of the process in aquaculture systems.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alsull, M. & Omar, W. (2012). Responses of Tetraselmis sp. and Nannochloropsis sp. isolated from Penang National Park Coastal Waters, Malaysia, to the combined influences of salinity, light and nitrogen limitation. International Conference on Chemical, Ecology and Environmental Sciences (ICEES’2012); Mar 17–18; Bangkok; (2012) 142–145.

  2. Andreotti, V., Chindris, A., Brundu, G., Vallainc, D., Francavilla, M., & García, J. (2017). Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with different microalgae species. Chemistry and Ecology, 33(8), 750–761.

    CAS  Article  Google Scholar 

  3. Ansari, F. A., Singh, P., Guldhe, A., & Bux, F. (2017). Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Research, 21, 169–177.

    Article  Google Scholar 

  4. Austin, B., Bauder, E., & Stobie, M. B. C. (1992). Inhibition of bacterial fish pathogens by Tetraselmsis suecica. Journal of Fish Diseases, 15, 55–61.

    Article  Google Scholar 

  5. Berge, J. P., & Barnathan, G. (2005). Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. In T. Scheper (Ed.), Marine biotechnology I: Advances in biochemical engineering/ biotechnology (Vol. 96, pp. 49–125).

    Google Scholar 

  6. Bernard, O. (2011). Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. Journal of Process Control, 21, 1378–1389.

    CAS  Article  Google Scholar 

  7. Bernard, O., Mairet, F., & Chachuat, B. (2016). Modelling of microalgae culture systems with applications to control and optimization. Advances in Biochemical Engineering/Biotechnology, 153, 59–87.

    CAS  Article  Google Scholar 

  8. Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S., & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Computers and Electronics in Agriculture, 76, 131–147.

    Article  Google Scholar 

  9. Bondioli, P., Della Bella, L., Rivolta, G., Chini Zittelli, G., Bassi, N., Rodolfi, L., Casini, D., Prussi, M., Chiaramonti, D., & Tredici, M. R. (2012). Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresource Technology, 114, 567–572.

    CAS  Article  Google Scholar 

  10. Borges, M. P., Silva, P., Moreira, L., & Soares, R. (2005). Integration of consumer-targeted microalgal production with marine fish effluent biofiltration – a strategy for mariculture sustainability. Journal of Applied Phycology, 17, 187–197.

    Article  Google Scholar 

  11. Brown, M. R., Jeffery, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151(1–4), 315–331.

    CAS  Article  Google Scholar 

  12. Chang, T., Ohta, S., Ikegami, N., Miyata, H., Kashimoto, T., & Kondo, M. (1993). Antibiotic substances produced by a marine green alga, Dunaliella primolecta. Bioresource Technology, 44, 149–153.

    CAS  Article  Google Scholar 

  13. Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. Y., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102, 1649–1655.

    CAS  Article  Google Scholar 

  14. Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2006). Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 261, 932–943.

    Article  Google Scholar 

  15. Chisti, Y. (2007a). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    CAS  Article  Google Scholar 

  16. Chisti, Y. (2007b). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131.

    Article  Google Scholar 

  17. Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29, 686–702.

    CAS  Article  Google Scholar 

  18. Droop, M. R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake growth and inhibition in Monochrysis lutheri. Journal of the Marine Biological Association, 48(3), 689–733.

    CAS  Article  Google Scholar 

  19. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  20. Freire, I., Serradeiro, R., Laranjeira, A., Peña, J., Seixas, P. (2013). Cultivo de las microalgas Tetraselmis e Isochrysis T-ISO con efluentes de una piscifactoría en RAS de Portugal. XIV Congr Nac Acuic, 2013 (AS 2570-2013).

  21. Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Feng, L. J., Liu, J. Z., Liu, M., & Cai, H. W. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55–61.

    Article  Google Scholar 

  22. Guedes, A. C., & Malcata, F. X. (2012). Nutritional value, and uses of microalgae in aquaculture. In Z. A. Muchlisin (Ed.), Aquaculture (pp. 59–78). https://doi.org/10.5772/1516.

    Google Scholar 

  23. Guevara, M., Lodeiros, C., Gómez, O., Lemus, N., Núñez, P., Romero, L., Vásquez, A., & Rosales, N. (2005). Carotenogénesis de cinco cepas del alga Dunaliella sp. (Chlorophyceae) aisladas de lagunas hipersalinas de Venezuela. Revista De Biologia Tropical, 55, 7.

    Google Scholar 

  24. Guiheneuf, F., Mimouni, V., Ulmann, L., & Tremblin, G. (2008). Environmental factors affecting growth and omega 3 fatty acid composition in Skeletonema costatum. The influences of irradiance and carbon source. Diatom Research, 23, 93–103.

    Article  Google Scholar 

  25. Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith & M. H. Chanley (Eds.), Culture of Marine Invertebrate Animals (pp. 26–60). New York: Plenum Press.

    Google Scholar 

  26. Guillard, R. R. L., & Ryther, J. H. (1962). Studies of marine planktonic diatoms I. Cyclotella nana (Hustedt) and Detonula confervacea (cleve). Canadian Journal of Microbiology, 8, 229–239.

    CAS  Article  Google Scholar 

  27. Guldhe, A., Ansari, F. A., Singh, P., & Bux, F. (2017). Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecological Engineering, 99, 47–53.

    Article  Google Scholar 

  28. Iacopozzi, I., Innocenti, V., Marsili-Libelli, S., & Giusti, E. (2007). A modified activated sludge model no. 3 (ASM3) with two-step nitrification-denitrification. Environmental Modelling & Software, 22(6), 847–861.

    Article  Google Scholar 

  29. Islam, M. S. (2005). Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Marine Pollution Bulletin, 50, 48–61.

    CAS  Article  Google Scholar 

  30. Khatoon, H., Haris, H., Rahman, N.A., Zakaria, M. N., Begum, H., & Mian, S., (2018). Growth, proximate pomposition and pigment production of Tetraselmis chuii cultured with aquaculture wastewater. Journal of Ocean University of China (Oceanic and Coastal Sea Research), 17(3), 641-646.

  31. Khatoon, H., Banerjee, S., Syahiran, M. S., Noordin, N. M., Bolong, A. M. A., & Endut, A. (2016). Re-use of aquaculture wastewater in cultivating microalgae as live feed for aquaculture organisms. Desalination and Water Treatment, 57, 1–8. https://doi.org/10.1080/19443994.2016.1156030.

    CAS  Article  Google Scholar 

  32. Kim, S. K., Jeon, Y. J., Kim, W. S., Back, H. C., Park, P. J., Byun, H. G., & Bai, S. C. (2001). Biochemical composition of marine microalgae and their potential antimicrobial activity. Journal of Fish Science and Technology, 4(2), 75–83.

    CAS  Google Scholar 

  33. Kiridi, E. A., & Ogunlela, A. O. (2016). Modelling phytoremediation rates of aquatic Macrophytes in aquaculture effluent. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 10(3), 353–360.

    Google Scholar 

  34. Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.

    CAS  Article  Google Scholar 

  35. Lamprianidou, F., Telfer, T., & Ross, L. G. (2015). A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture. Estuarine, Coastal and Shelf Science, 164, 253–264.

    CAS  Article  Google Scholar 

  36. Lananan, F., Abdul Hamid, S. H., Din, W. N. S., Ali, N., Khatoon, H., Jusoh, A., & Endut, A. (2014). Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing effective microorganism (EM-1) and microalgae (Chlorella sp.). International Biodeterioration and Biodegradation, 95, 127–134.

    CAS  Article  Google Scholar 

  37. Lemesle, V. & Mailleret, L. (2008). A mechanistic investigation of the algae growth “Droop” model. Acta Biotheoretica, 56(1–2), 87–102.

  38. Lombardi, A. T., & Wangersky, P. J. (1995). Particulate lipid class composition of 3 marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta grown in batch culture. Hydrobiologia, 306, 1–6.

    CAS  Article  Google Scholar 

  39. Lowrey, J.B. (2011). Seawater/wastewater production of microalgae-based biofuels in closed loop tubular Photobioreactors, (MSc in Agriculture, Agricultural Engineering Technology, The Faculty of California Polytechnic State University, San Luis Obispo, USA (Unpublished).

  40. Mairet, F., Bernard, O., Masci, P., Lacour, T., & Sciandra, A. (2011). Modelling neutral lipid production by the microalga Isochrysis affinis galbana under nitrogen limitation. Bioresource Technology, 102, 142–149.

    CAS  Article  Google Scholar 

  41. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 14, 217–232.

    CAS  Article  Google Scholar 

  42. Michels, M. H. A., Vaskoska, M., Vermuё, M. H., & Wijffels, R. H. (2014). Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm. Water Research, 65, 290–296.

    CAS  Article  Google Scholar 

  43. Milhazes-Cunha, H., & Otero, A. (2017). Valorisation of aquaculture effluents with microalgae: the integrated multi-trophic aquaculture concept. Algal Research, 24, 416–424.

    Article  Google Scholar 

  44. Morel, E. M. M. (1987). Kinetics of uptake and growth in phytoplankton. Journal of Phycology, 23, 137–150.

    CAS  Article  Google Scholar 

  45. Muller-Feuga, A., Moal, J., & Kaas, R. (2007). The microalgae of aquaculture. In Live Feeds in Marine Aquaculture. https://doi.org/10.1002/9780470995143.ch7.

    Google Scholar 

  46. Nasir, N. M., Bakar, N. S., Lananan, F., Abdul Hamid, S. H., Lam, S. S., & Jusoh, A. (2015). Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting. Bioresource Technology, 190, 492–498.

    Article  Google Scholar 

  47. NMKL – Procedur nr. 25 (2012). Utbyte (Recovery) vid kemiska analytiska mätninger, 30 p.

  48. Oswald, W. J. (2001). Introduction to advanced integrated wastewater pounding systems. Water Science and Technology, 24, 1–7.

    Article  Google Scholar 

  49. Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied Microbiology and Biotechnology, 90, 1429–1441.

    CAS  Article  Google Scholar 

  50. Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, L., & Vanrolleghem, P. (2001). River water quality model no. 1 (RWQM1): II. Biochemical process equations. Water science and technology: a journal of the International Association on Water Pollution Research, 43(5), 11–30.

    CAS  Article  Google Scholar 

  51. Renaud, S. M., Thinh, L. V., & Parry, D. L. (1999). The gross composition and fatty acid composition of 18 species of tropical Australia microalgae for possible use in mariculture. Aquaculture, 170, 147–159.

    CAS  Article  Google Scholar 

  52. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.

    CAS  Article  Google Scholar 

  53. Rodriguez-Mata, A. E., Torres-Muñoz, J. A., Domínguez-Bocanegra, A. R., Flores, G., & Rangel-Peraza, G. (2016). Nonlinear robust control for a photobioreactor in prescence of parametric disturbances. Revista Mexicana de Ingeniería Química, 15(3), 985–993.

    CAS  Google Scholar 

  54. Ryckebosch, E., Muylaert, K., & Foubert, I. (2012). Optimization of an analytical procedure for extraction of lipids from microalgae. Journal of the American Oil Chemists’ Society, 89, 189–198. https://doi.org/10.1007/s11746-011-1903-z.

    CAS  Article  Google Scholar 

  55. Saiu, G., Pistis, A., Chindris, A., Grosso, M., Baroli, M., & Scano, E. A. (2016). Study of the growth parameters of the Nannochloropsis oculata for the nitrogen and phosphorus removal from wastewater through design of experiment approach. Chemical Engineering Transactions, 49, 553–558.

    Google Scholar 

  56. Singh, P., Guldhe, A., Kumari, S., Rawat, I., & Bux, F. (2015). Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. The Biochemical Engineering Journal, 94, 22–29.

    CAS  Article  Google Scholar 

  57. Solimeno, A., Samsó, R., Uggetti, E., Sialve, B., Steyer, J. P., Gabarró, A., & García, J. (2015). New mechanistic model to simulate microalgae growth. Algal Research, 12, 350–358.

    Article  Google Scholar 

  58. Solimeno, A., Samsó, R., & García, J. (2016). Parameter sensitivity analysis of a mechanistic model to simulate microalgae growth. Algal Research, 15, 217–223.

    Article  Google Scholar 

  59. Solimeno, A., Parker, L., Lundquist, T., & García, J. (2017a). Integral microalgae-bacteria model (BIO_ALGAE): application to wastewater high rate algal ponds. Science of the Total Environment, 601–602, 646–657.

    Article  Google Scholar 

  60. Solimeno, A., Acién, F. G., & García, J. (2017b). Mechanistic model for design, analysis, operation and control of microalgae cultures: calibration and application to tubular photobioreactors. Algal Research, 21, 236–246.

    Article  Google Scholar 

  61. Tang, H., Chen, M., Simon Ng, K. Y., & Salley, S. O. (2012). Continuous microalgaecultivation in a photobioreactor. Biotechnology and Bioengineering, 109, 2468–2474.

    CAS  Article  Google Scholar 

  62. Tsukahara, K., & Sawayama, S. (2005). Liquid fuel production using microalgae. Journal of the Japan Petroleum Institute, 48, 251–259.

    CAS  Article  Google Scholar 

  63. Velichkova, K., Sirakov, I., & Stoyanova, S. (2014). Biomass production and wastewater treatment from aquaculture with Chlorella vulgaris under different carbon sources. Scientific Bulletin. Series F. Biotechnologies, 18, 83–88.

    Google Scholar 

  64. Wu, K. C., Ho, K. C., & Yau, Y. H. (2015). Effective removal of nitrogen and phosphorus from saline sewage by Dunaliella tertiolecta through acclimated cultivation modern. Environmental Science and Engineering, 1(5), 225–234.

    Article  Google Scholar 

  65. Wuang, S. C., Khin, M. C., Chua, P. Q. D., & Luo, Y. D. (2016). Use of spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64.

    Article  Google Scholar 

  66. Xin, L., Hong-Ying, H., Ke, G., & Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494–5500.

    CAS  Article  Google Scholar 

  67. Zheng, J., Hao, J., Wang, B., & Shui, C. (2011). Bioremediation of aquaculture wastewater by microalgae Isochrysis zhanjiangensis and production of the biomass material. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 460–461, 491–495.

    Google Scholar 

  68. Zhou, W., Min, M., Li, Y., Hu, B., Ma, X., Cheng, Y., Liu, Y., Chen, P., & Ruan, R. (2012). A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 110, 448–455.

    CAS  Article  Google Scholar 

Download references

Funding

This research was supported by the Sardinia Research plan activity, Art. 26 of LR 37/98, “Experimental systems for microalgae biomass production, applications for aquaculture.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valeria Andreotti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andreotti, V., Solimeno, A., Chindris, A. et al. Growth of Tetraselmis suecica and Dunaliella tertiolecta in Aquaculture Wastewater: Numerical Simulation with the BIO_ALGAE Model. Water Air Soil Pollut 230, 60 (2019). https://doi.org/10.1007/s11270-019-4122-0

Download citation

Keywords

  • Wastewater
  • Aquaculture
  • Microalgae
  • Mathematical model
  • Bioremediation