Skip to main content
Log in

High Catalytic Activity of Fe3−xCuxO4/Graphene Oxide (0 ≤ x ≤ 0.1) Nanocomposites as Heterogeneous Fenton Catalysts for p-Nitrophenol Degradation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In order to improve the catalytic properties of Fe3O4 nanoparticles in wastewater treatment, the Cu-doped Fe3O4/graphene oxide (Fe3−xCuxO4/GO) nanocomposites were prepared by a modified co-precipitation method and used as heterogeneous catalyst for p-Nitrophenol (p-NP) degradation. The effect of the GO and Cu contents in the nanocomposites was investigated. Compared with the unsupported Fe3O4 nanoparticles, the Fe3O4/GO nanocomposites have obviously improved catalytic performance, especially for the nanocomposite with 6.25 wt.% of the GO content. Furthermore, the catalytic efficiency is greatly improved by doping Cu in the nanocomposite. The Fe3−xCuxO4/GO nanocomposite achieves the best catalytic property in our catalyst system when the x value is about 0.075. Under the optimal reaction condition (0.8 g L−1 of catalyst dosage, 15 mmol L−1 of initial H2O2 concentration, 3.0 of pH value, and 30 °C of temperature), the p-NP conversion and chemical oxygen demand removal efficiencies in 120 min for the Fe2.925Cu0.075O4/GO nanocomposite are about 98.4% and 74.7%, respectively. And the p-NP conversion efficiency is still as high as 96.2% after four recycles under the optimum condition. The results clearly show that the Fe2.925Cu0.075O4/GO nanocomposite has outstanding catalytic properties for the p-NP degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bahadur, A., Saeed, A., Shoaib, M., Lqbal, S., Bashir, M. I., Waqas, M., Hussain, M. N., & Abbas, N. (2017). Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: Dielectric, magnetic, thermal and optical studies. Materials Chemistry & Physics, 198, 229–235.

    Article  CAS  Google Scholar 

  • Barros, W. R. P., Steter, J. R., Lanza, M. R. V., & Tavares, A. C. (2016). Catalytic activity of Fe3−xCuxO4, (0 ≤ x ≤ 0.25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process. Applied Catalysis B Environmental, 180, 434–441.

    Article  CAS  Google Scholar 

  • Bokare, A. D., & Choi, W. Y. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.

    Article  CAS  Google Scholar 

  • Chen, H. H., Yang, M., Tao, S., & Chen, G. W. (2017). Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p-nitrophenol reduction. Applied Catalysis B Environmental, 209, 648–656.

    Article  CAS  Google Scholar 

  • Costa, R. C., Lelis, M. F., Oliveira, L. C., Fabris, J. D., Ardisson, J. D., Rios, R. R., Silva, C. N., & Lago, R. M. (2006). Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials, 129, 171–178.

    Article  CAS  Google Scholar 

  • Gao, Y. W., Wang, Y., & Zhang, H. (2015). Removal of rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Applied Catalysis B Environmental, 178, 29–36.

    Article  CAS  Google Scholar 

  • Gonzalez-Olmos, R., Martin, M. J., Georgi, A., Kopinke, F. D., Oller, I., & Malato, S. (2012). Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B Environmental, 125(3), 51–58.

    Article  CAS  Google Scholar 

  • Guo, S., Zhang, G. K., Guo, Y. D., & Yu, J. C. (2013). Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon, 60(14), 437–444.

    Article  CAS  Google Scholar 

  • He, G. Y., Liu, W. F., Sun, X. Q., Chen, Q., Wang, X., & Chen, H. Q. (2013). Fe3O4@graphene oxide composite: A magnetically separable and efficient catalyst for the reduction of nitroarenes. Materials Research Bulletin, 48(5), 1885–1890.

    Article  CAS  Google Scholar 

  • Huang, H. H., Lu, M. C., & Chen, J. N. (2001). Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Research, 35(9), 2291–2299.

    Article  CAS  Google Scholar 

  • Kakavandi, B., Takdastan, A., Jaafarzadeh, N., Azizi, M., Mirzaei, A., & Azari, A. (2016). Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method. Journal of Photochemisrty & Photobiology A Chemistry, 314(1), 178–188.

    Article  CAS  Google Scholar 

  • Kwan, W. P., & Voelker, B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Science & Technology, 37(6), 1150–1158.

    Article  CAS  Google Scholar 

  • Magalhães, F., Pereira, M. C., Botrel, S. E. C., Fabris, J. D., Macedo, W. A., Mendonca, R., Lago, R. M., & Oliveira, L. C. A. (2007). Cr-containing magnetites Fe3−xCrxO4: The role of Cr3+ and Fe2+ on the stability and reactivity towards H2O2 reactions. Applied Catalysis A General, 332(1), 115–123.

    Article  Google Scholar 

  • Malik, P. K., & Saha, S. K. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology, 31, 241–250.

    Article  CAS  Google Scholar 

  • Matta, R., Hanna, K., & Chiron, S. (2007). Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Science of the Total Environment, 385(1), 242–251.

    Article  CAS  Google Scholar 

  • Menini, L., Pereira, M. C., Parreira, L. A., Fabris, J. D., & Gusevskaya, E. V. (2008). Cobalt-and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions. Journal of Catalysis, 254(2), 355–364.

    Article  CAS  Google Scholar 

  • Moura, F. C., Araujo, M. H., Costa, R. C., Fabris, J. D., Ardisson, J. D., Macedo, W. A., & Lago, R. M. (2005). Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere, 60(8), 1118–1123.

    Article  CAS  Google Scholar 

  • Nejad, M. A., & Jonsson, M. (2004). Reactivity of hydrogen peroxide towards Fe3O4, Fe2CoO4, and Fe2NiO4. Journal of Nuclear Materials, 334(1), 28–34.

    Article  CAS  Google Scholar 

  • Pereira, M. C., Oliveira, L. C. A., & Murad, E. (2012). Iron oxide catalysts: Fenton and Fenton-like reactions—A review. Clay Minerals, 47(3), 285–302.

    Article  CAS  Google Scholar 

  • Pugazhenthiran, N., Sathishkumar, P., Murugesan, S., & Anandan, S. (2011). Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles. Chemical Engineering Journal, 168(3), 1227–1233.

    Article  CAS  Google Scholar 

  • Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109(1), 207–210.

    Article  CAS  Google Scholar 

  • Tian, X. J., Liu, Y. F., Chi, W. D., Wang, Y., Yue, X. Z., Huang, Q. G., & Yu, C. Y. (2017). Catalytic degradation of phenol and p-Nitrophenol using Fe3O4/MWCNT nanocomposites as heterogeneous Fenton-like catalyst. Water, Air, & Soil Pollution, 228, 297.

    Article  Google Scholar 

  • Ullah, K., Ye, S., Zhu, L., Meng, Z. D., Sarkar, S., & Oh, W. C. (2014). Microwave assisted synthesis of a noble metal-graphene hybridphotocatalyst for high efficient decomposition of organicdyes under visible light. Materials Science and Engineering B, 180, 20–26.

    Article  CAS  Google Scholar 

  • Wan, D., Li, W. B., Wang, G. H., Lu, L. L., & Wei, X. B. (2016). Degradation of p-Nitrophenol using magnetic Fe0/Fe3O4/coke composite as a heterogeneous Fenton-like catalyst. Science of the Total Environment, 574, 1326–1334.

    Article  Google Scholar 

  • Wang, S. B. (2008). A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes & Pigments, 76, 714–720.

    Article  CAS  Google Scholar 

  • Wang, N. N., Chen, J. Q., Zhao, Q., & Xu, H. (2017a). Study on preparation conditions of coal fly ash catalyst and catalytic mechanism in a heterogeneous Fenton-like process. RSC Advances, 7(83), 52524–52532.

    Article  CAS  Google Scholar 

  • Wang, N. N., Zhao, Q., & Zhang, A. L. (2017b). Catalytic oxidation of organic pollutants in wastewater via a Fenton-like process under the catalysis of HNO3-modified coal fly ash. RSC Advances, 7(44), 27619–27628.

    Article  CAS  Google Scholar 

  • Wu, Y., Luo, H. J., Wang, H., Zhang, L., Liu, P. P., & Feng, L. Q. (2014). Fast adsorption of nickel ions by porous graphene oxide/sawdust composite and reuse for phenol degradation from aqueous solutions. Journal of Colloid & Interface Science, 436, 90–98.

    Article  CAS  Google Scholar 

  • Xu, H. Y., Shi, T. N., Zhao, H., Jin, L. G., Wang, F. C., Wang, C. Y., & Qi, S. Y. (2016). Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: Process optimization by response surface methodology. Frontiers of Materials Science, 10(1), 45–55.

    Article  Google Scholar 

  • Yang, S. J., He, H. P., Wu, D. Q., Chen, D., Liang, X. L., Qin, Z. H., Fan, M. D., & Zhu, J. X. (2009). Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3−xTixO4 (0≤x ≤0.78) at neutral pH values. Applied Catalysis B Environmental, 89, 527–535.

    Article  CAS  Google Scholar 

  • Yu, L., Chen, J. D., Liang, Z., Xu, W. C., Chen, L. M., & Ye, D. Q. (2016). Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst. Separation & Purification Technology, 171, 80–87.

    Article  CAS  Google Scholar 

  • Zhang, S. X., Zhao, X. L., Niu, H. Y., Shi, Y. L., Cai, Y. Q., & Jiang, G. B. (2009). Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. Journal of Hazardous Materials, 167, 560–566.

    Article  CAS  Google Scholar 

  • Zhao, S. F., Ma, H. J., Wang, M., Cao, C. Q., Xiong, J., Xu, Y. S., & Yao, S. D. (2010). Role of primary reaction initiated by 254 nm UV light in the degradation of p-nitrophenol attacked by hydroxyl radicals. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 9(5), 710–715.

    Article  CAS  Google Scholar 

  • Zhu, S. M., Dong, B. Z., Yu, Y. H., Bu, L. J., Deng, J., & Zhou, S. Q. (2017). Heterogeneous catalysis of ozone using ordered mesoporous Fe3O4 for degradation of atrazine. Chemical Engineering Journal, 328, 527–535.

    Article  CAS  Google Scholar 

  • Zubir, N. A., Yacou, C., Motuzas, J., Zhang, X., & Costa, J. C. D. D. (2014). Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Scientific Reports, 4, 1–8.

    Google Scholar 

Download references

Funding

This study is financially supported by the National Natural Science Foundation of China (Grant Nos. 21174011 and U1462102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfang Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Jia, Z., Li, P. et al. High Catalytic Activity of Fe3−xCuxO4/Graphene Oxide (0 ≤ x ≤ 0.1) Nanocomposites as Heterogeneous Fenton Catalysts for p-Nitrophenol Degradation. Water Air Soil Pollut 230, 64 (2019). https://doi.org/10.1007/s11270-019-4121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4121-1

Keywords

Navigation