Skip to main content
Log in

Shift of Soil Polycyclic Aromatic Hydrocarbons (PAHs) Dissipation Pattern and Microbial Community Composition due to Rhamnolipid Supplementation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biosurfactants are promising substitutes for chemical surfactants during polycyclic aromatic hydrocarbon (PAH) bioremediation. However, recent studies have revealed contrasting findings and critical knowledge gaps regarding the impacts of biosurfactants on the soil PAH biodegradation efficiency and microbial community. Here, a laboratory study was conducted to evaluate the impact of rhamnolipid on the PAH dissipation efficiency and microbial community structure during the time-course incubation. The data showed that the contribution ratio of biotic loss and abiotic loss depended on the ring number of PAH. In the microcosms supplemented with 20 μg g−1 rhamnolipid, the biodegradation efficiencies of phenanthrene, fluoranthene, and pyrene increased by 10.1%, 12.3%, and 22.0%, respectively, compared to those in the rhamnolipid-free treatment after incubation for 7 days. In contrast, rhamnolipid either had no impact on or inhibited PAH degradation in the later time points (21–35 days). The abundance of bacterial 16S rRNA and phnAc genes showed significant increase in soil amended of both PAH and rhamnolipid. MiSeq sequencing results revealed that potential PAHs-degrading Massilia, Bacillus, Lysobacter, Archrobacter, and Phenylobacterium became dominant genera in PAH treatment, irrespective of the rhamnolipid added. Nevertheless, PAH addition in the presence of rhamnolipid also significantly stimulated the growth of Delftia, Brevundimonas, Tumebacillus, and Geobacillus. In contrast, the rhamnolipid altered the microbial community composition through the selection of Gaiella, Solirubrobacter, Nocardioides, and Bacillus. The results reveal the intensive selectivity effect of PAH and rhamnolipid on the soil microbes that are involved in bioremediation, and highlight the positive effect on PAHs biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrion, A. C., Nakamura, J., Shea, D., & Aitken, M. D. (2016). Screening nonionic surfactants for enhanced biodegradation of polycyclic aromatic hydrocarbons remaining in soil after conventional biological treatment. Environmental Science & Technology, 50, 3838–3845.

    CAS  Google Scholar 

  • Bakker, M. I., Casado, B., Koerselman, J. W., Tolls, J., & Kollöffel, C. (2000). Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Science of the Total Environment, 263, 91–100.

    CAS  Google Scholar 

  • Berns, A., Philipp, H., Narres, H. D., Burauel, P., Vereecken, H., & Tappe, W. (2008). Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. European Journal of Soil Science, 59, 540–550.

    CAS  Google Scholar 

  • Bezza, F. A., & Chirwa, E. M. N. (2016). Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere, 144, 635–644.

    CAS  Google Scholar 

  • Bezza, F. A., & Chirwa, E. M. N. (2017). The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Chemical Engineering Journal, 309, 563–576.

    CAS  Google Scholar 

  • Bodour, A. A., Wang, J. M., Brusseau, M. L., & Maier, R. M. (2003). Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environmental Microbiology, 5, 888–895.

    CAS  Google Scholar 

  • Bondarenko, O., Rahman, P. K., Rahman, T. J., Kahru, A., & Ivask, A. (2010). Effects of rhamnolipids from Pseudomonas aeruginosa DS10-129 on luminescent bacteria toxicity and modulation of cadmium bioavailability. Microbial Ecology, 59, 588–600.

    CAS  Google Scholar 

  • Bouchez, M., Blanchet, D., & Vandecasteele, J. (1995). Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations inhibition phenomena and cometabolism. Applied Microbiology and Biotechnology, 43, 156–164.

    CAS  Google Scholar 

  • Bukin, S. V., Pavlova, O. N., Manakov, A. Y., Kostyreva, E. A., Chernitsyna, S. M., Mamaeva, E. V., et al. (2016). The ability of microbial community of Lake Baikal bottom sediments Associated with gas discharge to carry out the transformation of organic matter under thermobaric conditions. Frontiers in Microbiology, 7, 690.

    Google Scholar 

  • Cameotra, S. S., & Singh, P. (2009). Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microbial Cell Factories, 8, 16.

    Google Scholar 

  • Cébron, A., Norini, M.-P., Beguiristain, T., & Leyval, C. (2008). Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from gram positive and gram negative bacteria in soil and sediment samples. Journal of Microbiological Methods, 73, 148–159.

    Google Scholar 

  • Cébron, A., Louvel, B., Faure, P., France-Lanord, C., Chen, Y., Murrell, J. C., & Leyval, C. (2011). Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environmental Microbiology, 13, 722–736.

    Google Scholar 

  • Christofi, N., & Ivshina, I. (2002). Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology, 93, 915–929.

    CAS  Google Scholar 

  • Colores, G. M., Macur, R. E., Ward, D. M., & Inskeep, W. P. (2000). Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil. Applied and Environmental Microbiology, 66, 2959–2964.

    CAS  Google Scholar 

  • Congiu, E., & Ortega-Calvo, J.-J. (2014). Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons. Environmental Science & Technology, 48, 10869–10877.

    CAS  Google Scholar 

  • Contreras-Ramos, S. M., Álvarez-Bernal, D., & Dendooven, L. (2008). Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida). Soil Biology and Biochemistry, 40, 1954–1959.

    CAS  Google Scholar 

  • Coulon, F., McKew, B. A., Osborn, A. M., McGenity, T. J., & Timmis, K. N. (2007). Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environmental Microbiology, 9, 177–186.

    CAS  Google Scholar 

  • Das, K., & Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology, 98, 1339–1345.

    CAS  Google Scholar 

  • Deary, M. E., Ekumankama, C. C., & Cummings, S. P. (2016). Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants. Journal of Hazardous Materials, 307, 240–252.

    CAS  Google Scholar 

  • Deschenes, L., Lafrance, P., Villeneuve, J.-P., & Samson, R. (1996). Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Applied Microbiology and Biotechnology, 46, 638–646.

    CAS  Google Scholar 

  • Feitkenhauer, H., Müller, R., & MAuml, H. (2003). Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070 C by Thermus and Bacillus spp. Biodegradation, 14, 367–372.

    CAS  Google Scholar 

  • Fu, G., Kan, A. T., & Tomson, M. (1994). Adsorption and desorption hysteresis of PAHs in surface sediment. Environmental Toxicology and Chemistry, 13, 1559–1567.

    CAS  Google Scholar 

  • Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs) A review. Frontiers in Microbiology, 7, 1369.

    Google Scholar 

  • Gu, H., Lou, J., Wang, H., Yang, Y., Wu, L., Wu, J., & Xu, J. (2016). Biodegradation, biosorption of phenanthrene and its trans-membrane transport by Massilia sp. WF1 and Phanerochaete chrysosporium. Frontiers in Microbiology, 7, 38.

    Google Scholar 

  • Guerin, T. F. (1999). The extraction of aged polycyclic aromatic hydrocarbon (PAH) residues from a clay soil using sonication and a Soxhlet procedure a comparative study. Journal of Environmental Monitoring, 1, 63–67.

    CAS  Google Scholar 

  • Haritash, A., & Kaushik, C. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs) a review. Journal of Hazardous Materials, 169, 1–15.

    CAS  Google Scholar 

  • Hu, P., Dubinsky, E. A., Probst, A. J., Wang, J., Sieber, C. M. K., Tom, L. M., et al. (2017). Simulation of deepwater horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders. Proceedings of the National Academy of Sciences, 201703424.

  • Jho, E. H., Ryu, H., Shin, D., Kim, Y.-J., Choi, Y. J., & Nam, K. (2014). Prediction of landfarming period using degradation kinetics of petroleum hydrocarbons test with artificially contaminated and field-aged soils and commercially available bacterial cultures. Journal of Soils and Sediments, 14, 138–145.

    CAS  Google Scholar 

  • Jia, Z., & Conrad, R. (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 11, 1658–1671.

    CAS  Google Scholar 

  • Kadam, P. D., & Chuan, H. H. (2016). Rhamnolipids detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. International Urogynecology Journal, 27, 505.

    Google Scholar 

  • Kästner, M., Breuer-Jammali, M., & Mahro, B. (1998). Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Applied and Environmental Microbiology, 64, 359–362.

    Google Scholar 

  • Kavitha, V., Mandal, A. B., & Gnanamani, A. (2014). Microbial biosurfactant mediated removal and/or solubilization of crude oil contamination from soil and aqueous phase an approach with Bacillus licheniformis MTCC 5514. International Biodeterioration & Biodegradation, 94, 24–30.

    CAS  Google Scholar 

  • Kim, I. S., Park, J.-S., & Kim, K.-W. (2001). Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry, 16, 1419–1428.

    CAS  Google Scholar 

  • Kiran, G. S., Ninawe, A. S., Lipton, A. N., Pandian, V., & Selvin, J. (2016). Rhamnolipid biosurfactants evolutionary implications, applications and future prospects from untapped marine resource. Critical Reviews in Biotechnology, 36, 399–415.

    Google Scholar 

  • Klankeo, P., Nopcharoenkul, W., & Pinyakong, O. (2009). Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. Journal of Bioscience and Bioengineering, 108, 488–495.

    CAS  Google Scholar 

  • Konishi, M.-A., Fukuoka, T., Shimane, Y., Mori, K., Nagano, Y., Ohta, Y., Kitamoto, D., & Hatada, Y. (2011). Biochemical synthesis of novel, self-assembling glycolipids from ricinoleic acid by a recombinant α-glucosidase from Geobacillus sp. Biotechnology Letters, 33, 139–145.

    CAS  Google Scholar 

  • Laurie, A. D., & Lloyd-Jones, G. (2000). Quantification of phnAc andnahAc in contaminated New Zealand soils by competitive PCR. Applied and Environmental Microbiology, 66, 1814–1817.

    CAS  Google Scholar 

  • Li, R., Khafipour, E., Krause, D. O., Entz, M. H., de Kievit, T. R., et al. (2012). Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One, 7, e51897.

    CAS  Google Scholar 

  • Ling, W., & Gao, Y. (2004). Promoted dissipation of phenanthrene and pyrene in soils by amaranth (Amaranthus tricolor L.). Environmental Geology, 46, 553–560.

    CAS  Google Scholar 

  • Lloyd-Jones, G., Laurie, A. D., Hunter, D. W., & Fraser, R. (1999). Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiology Ecology, 29, 69–79.

    CAS  Google Scholar 

  • Lu, L., & Jia, Z. (2013). Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environmental Microbiology, 15, 1795–1809.

    CAS  Google Scholar 

  • Maeda, R., Nagashima, H., Zulkharnain, A. B., Iwata, K., & Omori, T. (2009). Isolation and characterization of a car gene cluster from the naphthalene, phenanthrene, and carbazole-degrading marine isolate Lysobacter sp. strain OC7. Current Microbiology, 59, 154–159.

    CAS  Google Scholar 

  • Marcoux, J., Déziel, E., Villemur, R., Lépine, F., Bisaillon, J. G., & Beaudet, R. (2000). Optimization of high-molecular-weight polycyclic aromatic hydrocarbons degradation in a two-liquid-phase bioreactor. Journal of Applied Microbiology, 88, 655–662.

    CAS  Google Scholar 

  • Maslin, P., & Maier, R. M. (2000). Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils. Bioremediation Journal, 4, 295–308.

    CAS  Google Scholar 

  • Mastrangelo, G., Fadda, E., & Marzia, V. (1996). Polycyclic aromatic hydrocarbons and cancer in man. Environmental Health Perspectives, 104, 1166.

    CAS  Google Scholar 

  • Molina, M., Araujo, R., & Hodson, R. E. (1999). Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments. Canadian Journal of Microbiology, 45, 520–529.

    CAS  Google Scholar 

  • Morillo, E., Romero, A., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grcman, H., et al. (2007). Soil pollution by PAHs in urban soils a comparison of three European cities. Journal of Environmental Monitoring, 9, 1001–1008.

    CAS  Google Scholar 

  • Okere, U., & Semple, K. (2012). Biodegradation of PAHs in pristinesoils from different climatic regions. J Bioremed Biodegrad S, 1.

  • Otte, J. M., Blackwell, N., Soos, V., Rughöft, S., Maisch, M., Kappler, A., Kleindienst, S., & Schmidt, C. (2018). Sterilization impacts on marine sediment---Are we able to inactivate microorganisms in environmental samples? FEMS Microbiology Ecology, 94, fiy189-fiy189.

    Google Scholar 

  • Owsianiak, M., Chrzanowski, Ł., Szulc, A., Staniewski, J., Olszanowski, A., Olejnik-Schmidt, A. K., et al. (2009). Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders effect of the type of blend and the addition of biosurfactants. Bioresource Technology, 100, 1497–1500.

    CAS  Google Scholar 

  • Park, K. S., Sims, R. C., Dupont, R. R., Doucette, W. J., & Matthews, J. E. (1990). Fate of PAH compounds in two soil types influence of volatilization, abiotic loss and biological activity. Environmental Toxicology and Chemistry, 9, 187–195.

    CAS  Google Scholar 

  • Poli, A., Romano, I., Caliendo, G., Nicolaus, G., Orlando, P., De Falco, A., Lama, L., Gambacorta, A., & Nicolaus, B. (2006). Geobacillus toebii subsp. decanicus subsp. nov., a hydrocarbon-degrading, heavy metal resistant bacterium from hot compost. The Journal of General and Applied Microbiology, 52, 223–234.

    CAS  Google Scholar 

  • Ramsay, A. J., & Bawden, A. D. (1983). Effects of sterilization and storage on respiration, nitrogen status and direct counts of soil bacteria using acridine orange. Soil Biology and Biochemistry, 15, 263–268.

    CAS  Google Scholar 

  • Razavi Darbar, S., & Lakzian, A. (2007). Evaluation of chemical and biological consequences of soil sterilization methods. Caspian Journal of Environmental Sciences.

  • Rodgers-Vieira, E. A., Zhang, Z., Adrion, A. C., Gold, A., & Aitken, M. D. (2015). Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 81, 3775–3781.

    CAS  Google Scholar 

  • Ron, E. Z., & Rosenberg, E. (2002). Biosurfactants and oil bioremediation. Current Opinion in Biotechnology, 13, 249–252.

    CAS  Google Scholar 

  • Sánchez-Peinado, M. d. M., González-López, J., Martínez-Toledo, M. V., Pozo, C., & Rodelas, B. (2010). Influence of linear alkylbenzene sulfonate (LAS) on the structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities in a soil microcosm. Environmental Science and Pollution Research, 17, 779–790.

    Google Scholar 

  • Shahi, A., Aydin, S., Ince, B., & Ince, O. (2016). Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicology and Environmental Safety, 125, 153–160.

    CAS  Google Scholar 

  • Shaw, L. J., Beaton, Y., Glover, L. A., Killham, K., & Meharg, A. A. (1999). Re-inoculation of autoclaved soil as a non-sterile treatment for xenobiotic sorption and biodegradation studies. Applied Soil Ecology, 11, 217–226.

    Google Scholar 

  • Shin, K. H., Ahn, Y., & Kim, K. W. (2005). Toxic effect of biosurfactant addition on the biodegradation of phenanthrene. Environmental Toxicology and Chemistry, 24, 2768–2774.

    CAS  Google Scholar 

  • Siyao, D. U., Miao, Y. U., Liu, F., Xiao, L., Zhang, H., Tao, J., Wei, G. U., Jingyan, G. U., & Chen, X. (2017). Effect of facility management regimes on soil bacterial diversity and community structure. Chinese Journal of Eco-Agriculture.

  • Sohn, J. H., Kwon, K. K., Kang, J.-H., Jung, H.-B., & Kim, S.-J. (2004). Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. International Journal of Systematic and Evolutionary Microbiology, 54, 1483–1487.

    CAS  Google Scholar 

  • Song, Y. F., Jing, X., Fleischmann, S., & Wilke, B. M. (2002). Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments. Chemosphere, 48, 993–1001.

    CAS  Google Scholar 

  • Song, M., Luo, C., Jiang, L., Zhang, D., Wang, Y., & Zhang, G. (2015). Identification of benzo [a] pyrene-metabolizing bacteria in forest soils by using DNA-based stable-isotope probing. Applied and Environmental Microbiology, 81, 7368–7376.

    CAS  Google Scholar 

  • Sponza, D. T., & Gök, O. (2010). Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresource Technology, 101, 914–924.

    CAS  Google Scholar 

  • Sun, T.-R., Cang, L., Wang, Q.-Y., Zhou, D.-M., Cheng, J.-M., & Xu, H. (2010). Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. Journal of Hazardous Materials, 176, 919–925.

    CAS  Google Scholar 

  • Taccari, M., Milanovic, V., Comitini, F., Casucci, C., & Ciani, M. (2012). Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. International Biodeterioration & Biodegradation, 66, 39–46.

    CAS  Google Scholar 

  • Tahseen, R., Afzal, M., Iqbal, S., Shabir, G., Khan, Q. M., Khalid, Z. M., & Banat, I. M. (2016). Rhamnolipids and nutrients boost remediation of crude oil-contaminated soil by enhancing bacterial colonization and metabolic activities. International Biodeterioration & Biodegradation, 115, 192–198.

    CAS  Google Scholar 

  • Tang, L., Tang, X.-Y., Zhu, Y.-G., Zheng, M.-H., & Miao, Q.-L. (2005). Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environment International, 31, 822–828.

    CAS  Google Scholar 

  • Tao, S., Cui, Y. H., Xu, F. L., Li, B. G., Cao, J., Liu, W. X., Schmitt, G., Wang, X. J., Shen, W. R., Qing, B. P., & Sun, R. (2004). Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Science of the Total Environment, 320, 11–24.

    CAS  Google Scholar 

  • Team, R. (2011). R development Core Team R a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Tejeda-Agredano, M., Gallego, S., Vila, J., Grifoll, M., Ortega-Calvo, J., & Cantos, M. (2013). Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biology and Biochemistry, 57, 830–840.

    CAS  Google Scholar 

  • Vacca, D., Bleam, W., & Hickey, W. (2005). Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Applied and Environmental Microbiology, 71, 3797–3805.

    CAS  Google Scholar 

  • Vila, J., Tauler, M., & Grifoll, M. (2015). Bacterial PAH degradation in marine and terrestrial habitats. Current Opinion in Biotechnology, 33, 95–102.

    CAS  Google Scholar 

  • Wang, J., Zhang, J., Ding, K., Xin, Y., & Pang, H. (2012). Brevundimonas viscosa sp. nov., isolated from saline soil. International Journal of Systematic and Evolutionary Microbiology, 62, 2475–2479.

    CAS  Google Scholar 

  • Wang, Q., Xie, N., Qin, Y., Shen, N., Zhu, J., Mi, H., & Huang, R. (2013). Tumebacillusflagellatus sp. nov., an α-amylase/pullulanase-producing bacterium isolated from cassava wastewater. International Journal of Systematic and Evolutionary Microbiology, 63, 3138–3142.

    CAS  Google Scholar 

  • Wang, L., Zhang, J., Li, H., Yang, H., Peng, C., Peng, Z., & Lu, L. (2018). Shift in the microbial community composition of surface water and sediment along an urban river. Science of the Total Environment, 627, 600–612.

    CAS  Google Scholar 

  • Whang, L.-M., Liu, P.-W. G., Ma, C.-C., & Cheng, S.-S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. Journal of Hazardous Materials, 151, 155–163.

    CAS  Google Scholar 

  • Wild, S. R., & Jones, K. C. (1995). Polynuclear aromatic hydrocarbons in the United Kingdom environment a preliminary source inventory and budget. Environmental Pollution, 88, 91–108.

    CAS  Google Scholar 

  • Wild, E., Dent, J., Thomas, G. O., & Jones, K. C. (2005). Real-time visualization and quantification of PAH photodegradation on and within plant leaves. Environmental Science & Technology, 39, 268–273.

    CAS  Google Scholar 

  • Wolf, D., Dao, T., Scott, H., & Lavy, T. (1989). Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. Journal of Environmental Quality, 18, 39–44.

    CAS  Google Scholar 

  • Wu, Y., Ding, Q., Zhu, Q., Zeng, J., Ji, R., Dumont, M. G., & Lin, X. (2018). Contributions of ryegrass, lignin and rhamnolipid to polycyclic aromatic hydrocarbon dissipation in an arable soil. Soil Biology and Biochemistry, 118, 27–34.

    CAS  Google Scholar 

  • Xiao, J., Guo, L., Wang, S., & Lu, Y. (2010). Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China. Journal of Hazardous Materials, 174, 818–823.

    CAS  Google Scholar 

  • Zafra, G., Absalón, Á. E., Cuevas, M. D. C., & Cortés-Espinosa, D. V. (2014). Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water, Air, & Soil Pollution, 225, 1826.

    Google Scholar 

  • Zeng, G., Fu, H., Zhong, H., Yuan, X., Fu, M., Wang, W., & Huang, G. (2007). Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and rhamnolipid, in liquid culture media and compost matrix. Biodegradation, 18, 303–310.

    CAS  Google Scholar 

  • Zhang, Y., Maier, W. J., & Miller, R. M. (1997). Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environmental Science & Technology, 31, 2211–2217.

    CAS  Google Scholar 

  • Zhang, D., Zhu, L., & Li, F. (2013). Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain. Bioresource Technology, 142, 454–461.

    CAS  Google Scholar 

  • Zhao, Z., Selvam, A., & Wong, J. W.-C. (2011). Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Bioresource Technology, 102, 3999–4007.

    CAS  Google Scholar 

  • Zhu, H., & Aitken, M. D. (2010). Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environmental Science & Technology, 44, 7260–7265.

    CAS  Google Scholar 

  • Zhu, H., Singleton, D. R., & Aitken, M. D. (2010). Effects of nonionic surfactant addition on populations of polycyclic aromatic hydrocarbon-degrading bacteria in a bioreactor treating contaminated soil. Environmental Science & Technology, 44, 7266–7271.

    CAS  Google Scholar 

  • Zylstra, G. J., Wang, X. P., Kim, E., & Didolkar, V. A. (1994). Cloning and analysis of the genes for polycyclic aromatic hydrocarbon degradationa. Annals of the New York Academy of Sciences, 721, 386–398.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Huilin Li, Lan Wang, Mingli Liao, and Zaijun Yang for their assistance in chemical analysis.

Funding

This work was financially supported by the National Science Foundation of China (41606142) and the Fundamental Research Funds of China West Normal University (463140 and 412554).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Lu or Chao Peng.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 1158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Zhang, J. & Peng, C. Shift of Soil Polycyclic Aromatic Hydrocarbons (PAHs) Dissipation Pattern and Microbial Community Composition due to Rhamnolipid Supplementation. Water Air Soil Pollut 230, 107 (2019). https://doi.org/10.1007/s11270-019-4118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4118-9

Keywords

Navigation