Skip to main content
Log in

Modulating the Effect of Iron and Total Organic Carbon on the Efficiency of a Hydrogen Peroxide-Based Algaecide for Suppressing Cyanobacteria

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The intensity and frequency of cyanobacteria-dominated harmful algal blooms (cHABs) has been increasing. A key issue associated with cHABs is the potential to release cyanotoxins, such as microcystin. One of the primary methods for addressing cHABs in a reservoir is the application of algaecides. This research evaluated the impact of common environmental factors (i.e., Fe, total organic carbon) on the efficacy of a hydrogen peroxide-based algaecide to attain control of a targeted cyanobacterial population. The results found that sodium carbonate peroxydrate (SCP, trade name PAK®27) at half the manufacturer’s suggested application was effective at suppressing cyanobacteria for 2 weeks. For example, reactors that contained a full level of TOC and 1 mg/L Fe significantly decreased by 89% from 21,899 to 2437 ± 987 cells/mL (p < 0.05) by 2 days after treatment with half-dose SCP while reactors that contained the full-dose TOC and no SCP treatment depicted an increase in cyanobacteria population over the first week. Furthermore, as the cyanobacteria population decreased, the algal assemblage began to switch to being green algae dominant. Under the experimental conditions evaluated, Fe and total organic content did not interfere with the efficacy of SCP. SCP can provide effective control of cyanobacteria in a variety of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Tebrineh, J., Pearson, L. A., Yasar, S. A., & Neilan, B. A. (2012). A multiplex qPCR targeting hepta- and neurotoxigenic cyanobacteria of global significance. Harmful Algae, 15, 19–25.

    CAS  Google Scholar 

  • American Water Works Association (AWWA). (2010). Algae: Source to treatment, manual of water supply practices M57. First Edition. Denver, CO.

  • Bandala, E. R., Martínez, D., Martínez, E., & Dionysiou, D. D. (2004). Degradation of microcystin-LR toxin by Fenton and photo-Fenton processes. Toxicon, 43(7), 829–832.

    CAS  Google Scholar 

  • Barrington, D. J., Ghadouani, A., & Ivey, G. N. (2011). Environmental factors and the application of hydrogen peroxide for the removal of cyanobacteria from waste stabilization ponds. Journal of Environmental Engineering, 137(10), 952–960.

    CAS  Google Scholar 

  • Barrington, D. J., Reichwaldt, E. S., & Ghadouani, A. (2013). The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecological Engineering, 50, 86–94.

    Google Scholar 

  • Barroin, G., & Feuillade, M. (1986). Hydrogen peroxide as a potential algicide for Oscillatoria rubescens DC. Water Research, 20(5), 619–623.

    CAS  Google Scholar 

  • Bauza, L., Aguilera, A., Echenique, R., Andrinolo, D., & Giannuzzi, L. (2014). Application of hydrogen peroxide to the control of eutrophic lake systems in laboratory assays. Toxins, 6, 2657–2675.

    Google Scholar 

  • Burkholder, J. M., Gobler, C. J., O’Neill, J. M. (2018). Cyanobacteria, pp. 591–595. In: Harmful algal blooms and their management: A compendium desk reference, by Shumway SE, Burkholder JM, Morton SL (eds.). John Wiley & Sons Ltd., Hoboken.

  • Burson, A., Matthijs, H. C. P., de Bruijne, W., Talens, R., Hoogenboom, R., Gerssen, A., et al. (2014). Termination of a toxic Alexandrium bloom with hydrogen peroxide. Harmful Algae, 31, 125–135.

    CAS  Google Scholar 

  • Carmichael, W. W., & Boyer, G. L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae, 54, 194–212.

    Google Scholar 

  • Casamatta, D. A., & Wickstrom, C. E. (2000). Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa Kützing. Microbial Ecology, 40, 64–73.

    CAS  Google Scholar 

  • Cooper, W. J., & Zepp, R. G. (1990). Hydrogen peroxide decay in waters with suspended soils: Evidence for biologically mediated processes. Canadian Journal of Fisheries and Aquatic Sciences, 47(5), 888–893.

    CAS  Google Scholar 

  • Cornish, B. J. P. A., Lawton, L. A., & Robertson, P. K. J. (2000). Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Applied Catalysis B, Environmental, 25(1), 59–67.

    CAS  Google Scholar 

  • Crafton, E. A. (Speaker), Gao, A. (Speaker), Zhang, L., Ott, D. W., Cutright, T. J. (2017). Evaluating effectiveness of three different algaecides for Lake Rockwell. Akron Global Water Alliance USA Water Conference, Akron OH, May 31- June 1.

  • Crafton, E. A., Glowczewski, J., Ott, D. W., Cutright, T. J. (2018). Applications of algaecides for suppression of HABs: From bench to reservoir. Akron global water Alliance USA water conference, Akron OH, May 30-31.

  • De Philippis, R., & Vicenzini, M. (1998). Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiology Reviews, 22, 151–175.

    Google Scholar 

  • Drabkova, M., Matthijs, H. C. P., Admiraal, W., & Marsalek, B. (2007). Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica, 45(3), 363–369.

    CAS  Google Scholar 

  • Fan, J., Ho, L., Hobson, P., Daly, R., Brookes, J. (2014). Application of various oxidants for cyanobacteria control and cyanotoxin removal in wastewater treatment. Journal of Environmental Engineering, 140(7), 04014022-1-04014022-8.

  • Gao, Y., Cornwell, J. C., Stoecker, D. K., & Owens, M. S. (2012). Effects of cyanobacterial driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in shallow fresh water estuary. Biogeosciences, 9, 2697–2710.

    CAS  Google Scholar 

  • Geer, T., Calomeni, A., Kinley, C., Iwinski, K., & Rodgers, J. H. (2017). Predicting in situ responses of taste- and odor-producing algae in a southeastern US reservoir to a sodium carbonate peroxyhydrate algaecide using a laboratory exposure-response model. Water, Air & Soil Pollution, 228(2), 1–14.

    CAS  Google Scholar 

  • Greenfield, D. L., Duquette, A., Goodson, A., Keppler, C. J., Williams, S. H., Brock, L. M., et al. (2014). The effects of chemical algaecides on cell numbers and toxin content of the cyanobacteria Microcystis aeruginosa and Anabaenopsis sp. Environmental Management, 54, 1110–1120.

    Google Scholar 

  • Hakkinen, P. J., Anesio, A. M., & Graneli, W. (2004). Hydrogen peroxide distribution, production, and decay in boreal lakes. Canadian Journal of Fisheries and Aquatic Sciences, 61(8), 1520–1527.

    Google Scholar 

  • Hamilton, D. P., Wood, S. A., Dietrich, D. R., & Puddick, J. (2014). Costs of harmful blooms of freshwater cyanobacteria. In N. K. Sharma, A. K. Rai, & L. J. Stal (Eds.), Cyanobacteria: An economic perspective (pp. 245–256). Chichester: John Wiley & Sons ltd..

    Google Scholar 

  • Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. A., Cochlan, W. P., Dennison, W. C., et al. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8, 3–13.

    CAS  Google Scholar 

  • Herrmann, R. (1996). The daily changing pattern of hydrogen peroxide in New Zealand surface waters. Environmental Toxicology and Chemistry, 15, 652–662.

    CAS  Google Scholar 

  • Hoagland, P., Anderson, D. M., Kaoru, Y., & White, A. W. (2002). The economic effects of harmful algal blooms in the United States: Estimates, assessment issues, and information needs. Estuaries, 25, 819–837.

    Google Scholar 

  • Hyenstrand, P., Burkert, U., Pettersson, A., & Blomqvist, P. (2000). Competition between the green alga Scenedesmus and the cyanobacterium Synechococcus under different modes of inorganic nitrogen supply. Hydrobiologia, 435, 91–98.

    Google Scholar 

  • Jarvie, H. P., Sharpley, A. N., Spears, B., Buda, A. R., May, L., & Kleinman, P. J. (2013). Water quality remediation faces unprecedented challenges from “legacy phosphorus.”. Environmental Science and Technology, 47, 8997–8998.

    CAS  Google Scholar 

  • Kansole, M. M. R., & Lin, T. F. (2017). Impacts of hydrogen peroxide and copper sulfate on the control of Microcystis aeruginosa and MC-LR and the inhibition of MC-LR degrading bacterium Bacillus sp. Water, 9, 255–272.

    Google Scholar 

  • Kranzler, C., Rudolf, M., Keren, N., & Schleiff, E. (2013). Chapter three—Iron in cyanobacteria. In Advances in botanical research, v. 65 (pp. 57–105). Amsterdam: Elsevier Ltd..

    Google Scholar 

  • Latifi, A., Jeanjean, R., Lemeille, S., Havaux, M., & Zhang, C. C. (2005). Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. Journal of Bacteriology, 187(18), 6596–6598.

    CAS  Google Scholar 

  • Lawton, L. A., & Robertson, P. K. J. (1999). Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chemical Society Reviews, 28(4), 217–224.

    CAS  Google Scholar 

  • Liu, I., Lawton, L. A., & Robertson, P. K. J. (2003). Mechanistic studies of the photocatalytic oxidation of microcystin-LR: An investigation of byproducts of the decomposition process. Environmental Science and Technology, 37(14), 3214–3219.

    CAS  Google Scholar 

  • Lopez-Gomollon, S., Hernandez, J. A., Pellicer, S., Angarica, V. E., Peleato, M. L., & Fillat, M. F. (2007). Cross-talk between iron and nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: Identification of overlapping genes in FurA and NtcA reulons. Journal Molecular Biology, 374, 267–281.

    CAS  Google Scholar 

  • Lürling, M., Meng, D., & Faassen, E. J. (2014). Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in the cyanobacterium, Microcystis aeruginosa. Toxins (Basel), 6, 3260–3280.

    Google Scholar 

  • Matthijs, H. C., Visser, P. M., Reeze, B., Meeuse, J., Slot, P. C., Wijn, G., et al. (2012). Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research, 46, 1460–1472.

    CAS  Google Scholar 

  • Matthjis, H. C. P., Jancula, D., Visser, P. M., & Marsalek, B. (2016). Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation. Aquatic Ecology, 50(3), 443–460.

    Google Scholar 

  • Merel, F. M. M., Rueter, J. G., & Price, N. M. (1991). Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with high nutrient and low biomass. Oceanography, 4(2), 56–61.

    Google Scholar 

  • Moffett, J. W., & Zafiriou, O. C. (1993). The photochemical decomposition of hydrogen-peroxide in surface waters of the Eastern Caribbean and Orinoco River. Journal of Geophysical Research: Oceans, 98, 2307–2313.

    CAS  Google Scholar 

  • Montgomery, D. (2013). Design and analysis of experiments, 8 th edition. New York: Wiley and Sons.

    Google Scholar 

  • Nagai, T., Imai, A., Matsushige, K., & Fukushia, T. (2007). Growth characteristics and growth modeling of Microcystis aeruginosa and Planktothrix agardhii under iron limitation. Limnology, 8, 261–270.

    CAS  Google Scholar 

  • Padisák, J. (1997). Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju, an expanding, highly adaptive cyanobacterium: Worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 107(4), 563–593.

    Google Scholar 

  • Paerl, H. W., Fulton, R. S., III, Moiander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms, with emphasis on cyanobacteria. The Scientific World, 1, 76–113.

    CAS  Google Scholar 

  • Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R., McCarthy, M. J. J., Newell, S. E., et al. (2016). Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 54, 213–222.

    Google Scholar 

  • Passardi, F., Zamocky, M., Favet, J., Jakopitsch, C., Penel, C., Obinger, C., & Dunand, C. (2007). Phylogenetic distribution of catalase-peroxidases: Are there patches of order in chaos? Gene, 397(1–2), 101–113.

    CAS  Google Scholar 

  • Pyo, D., & Yoo, J. (2008). Degradation of cyanobacterial toxin, microcystin LR, using chemical oxidants. Journal of Immunoassay and Immunochemistry, 29(3), 211–219.

    CAS  Google Scholar 

  • Qian, H., Yu, S., Sun, Z., Xie, X., Liu, W., & Fu, Z. (2010). Effects of copper sulfate, hydrogen peroxide and N-pehnyl-2-naphthylamine on oxidative stress and the gene expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquatic Toxicology, 99, 405–412.

    CAS  Google Scholar 

  • Reichwaldt, E. S., Zheng, L., Barrington, D. J., & Ghadouani, A. (2012). Acute toxicological response of Daphnia and Moina to hydrogen peroxide. Journal of Environmental Engineering, 138, 607–611.

    CAS  Google Scholar 

  • SePro. (2015). PAK 27 algaecide safety data sheet. Carmel: SePRO Corporation.

    Google Scholar 

  • Sinha, A. K., Eggleton, M. A., & Lochmann, R. T. (2018). An environmentally friendly approach for mitigating cyanobacteria bloom and their toxins in hypereutrophic ponds: Potentiality of a newly developed granular hydrogen peroxide-based compound. Science Total Environment, 637-638, 524–537.

    CAS  Google Scholar 

  • Søndergaard, M., Jensen, P. J., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506-509, 135–145.

    Google Scholar 

  • Song, W., De La Cruz, A., Rein, K., & O’Shea, K. (2006). Ultrasonically induced degradation of microcystin-LR and -RR: Identification of products, effect of pH, formation and destruction of peroxides. Environmental Science & Technology, 40, 3941–3946.

    CAS  Google Scholar 

  • Song, W. H., Bardowell, S., & O'Shea, K. E. (2007). Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins). Environmental Science & Technology, 41, 5336–5341.

    CAS  Google Scholar 

  • Tsuji, K., Watanuki, T., Kondo, F., Watanabe, M. F., Suzuki, S., Nakazawa, H., et al. (1995). Stability of microcystins from cyanobacteria. 2. Effect of UV light on decomposition and isomerization. Toxicon, 33(12), 1619–1631.

    CAS  Google Scholar 

  • Vuorio, K., Lagus, A., Lehtimaki, J. M., Suomela, J., & Helminen, H. (2005). Phytoplankton community responses to nutrient and iron enrichment under different nitrogen to phosphorous ratios in the northern Baltic Sea. Journal of Experimental Marine Biology and Ecology, 322, 39–52.

    CAS  Google Scholar 

  • Wang, J., Chen, Z., Chen, H., & Wen, Y. (2018). Effect of hydrogen peroxide on Microcystis aeruginosa: Role of cytochromes P450. Science of the Total Environment, 626, 211–218.

    CAS  Google Scholar 

  • Weenink, E. F. J., Luimstra, V. M., Schuurmans, J. M., Van Herk, M. J., Visser, P. M., & Matthijs, H. C. P. (2015). Combatting cyanobacteria with hydrogen peroxide: A laboratory study on the consequences for phytoplankton community and diversity. Frontiers in Microbiology, 6, 714.

    Google Scholar 

  • Welker, M., & Steinberg, C. (1999). Indirect photolysis of cyanotoxins: One possible mechanism for their low persistence. Water Research, 33(5), 1159–1164.

    CAS  Google Scholar 

  • Welker, M., & Steinberg, C. (2000). Rates of humic substance photosensitized degradation of microcystin-LR in natural waters. Environmental Science & Technology, 34(16), 3415–3419.

    CAS  Google Scholar 

  • Wilson, C. L., Hinman, N. W., & Sheridan, R. P. (2000). Hydrogen peroxide formation and decay in iron-rich geothermal waters: The relative roles of abiotic and biotic mechanisms. Photochemistry and Photobiology, 71(6), 691–699.

    CAS  Google Scholar 

  • Yang, Z., Buey, R. P., Fernandez-Figueroa, E. G., Barros, M. U. G., Rajendran, S., & Wilson, A. E. (2018). Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond. Environmental Pollution, 240, 590–598.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa J. Cutright.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crafton, E.A., Cutright, T.J., Bishop, W.M. et al. Modulating the Effect of Iron and Total Organic Carbon on the Efficiency of a Hydrogen Peroxide-Based Algaecide for Suppressing Cyanobacteria. Water Air Soil Pollut 230, 56 (2019). https://doi.org/10.1007/s11270-019-4112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4112-2

Keywords

Navigation