Skip to main content
Log in

Removal of Cu2+ and Ni2+ from Wastewater by Using Modified Alkali-Leaching Residual Wire Sludge as Low-Cost Adsorbent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Alkali-leaching residual wire sludge (AWRS) is an abundant by-product in the harmless disposal process of wire rope sludge. In this study, we modified AWRS through thermal treatment to produce a low-cost and highly efficient adsorbent for the removal of Cu2+ and Ni2+ from wastewater. The results indicated that AWRS calcinated at 700 °C exhibited maximum Cu2+ and Ni2+ removal capacities (36.48 mg/g and 46.58 mg/g, respectively). The adsorption process was observed to follow the Elovich kinetic model and the Langmuir–Freundlich isotherm model. The sorption of Cu2+ and Ni2+ on AWRS700 was highly pH dependent and behaved optimally at the solution pH values of 6 and 5, respectively. Column studies and physicochemical analyses (XRD, SEM-EDS, and XPS) indicated that the sorption of Cu2+ and Ni2+ on AWRS700 was mainly governed by the chemisorption mechanism, and this was attributed to active metal oxides (Fe2O3, CaO, and Al2O3) in AWRS700. Specifically, Cu2+ is mainly adsorbed on AWRS700 in the form of Cu(OH)2, CuO2, and CuFeO2, and Ni2+ is mainly adsorbed in the form of NiAlO4, Ni2O3, and Ni(OH)2. Given the low-cost and high adsorption efficiency of AWRS700, the developed AWRS700 is a promising adsorbent for Cu2+ and Ni2+ removal from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acheampong, M. A., Pereira, J. P., Meulepas, R. J., & Lens, P. N. (2012). Kinetics modelling of cu(II) biosorption on to coconut shell and Moringa oleifera seeds from tropical regions. Environmental Technology, 33(4–6), 409–417.

    Article  CAS  Google Scholar 

  • Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166(1), 36–59.

    Article  CAS  Google Scholar 

  • Ahmed, M. J. K., & Ahmaruzzaman, M. (2016). A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. Journal of Water Process Engineering, 10, 39–47.

    Article  Google Scholar 

  • Al-Harahsheh, M. S., Al Zboon, K., Al-Makhadmeh, L., Hararah, M., & Mahasneh, M. (2015). Fly ash based geopolymer for heavy metal removal: A case study on copper removal. Journal of Environmental Chemical Engineering, 3(3), 1669–1677.

    Article  CAS  Google Scholar 

  • Ali, R. M., Hamad, H. A., Hussein, M. M., & Malash, G. F. (2016). Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering, 91, 317–332.

    Article  Google Scholar 

  • Belyaeva, O. V., Krasnova, T. A., & Gladkova, O. S. (2015). Effect of the thermal treatment conditions of granulated active carbons on their properties. Solid Fuel Chemistry, 49(3), 196–200.

    Article  CAS  Google Scholar 

  • Chairaksa-Fujimoto, R., Maruyama, K., Miki, T., & Nagasaka, T. (2016). The selective alkaline leaching of zinc oxide from electric arc furnace dust pre-treated with calcium oxide. Hydrometallurgy, 159, 120–125.

    Article  CAS  Google Scholar 

  • Chang, E. E., Chen, C. H., Chen, Y. H., Pan, S. Y., & Chiang, P. C. (2011). Performance evaluation for carbonation of steel-making slags in a slurry reactor. Journal of Hazardous Materials, 186(1), 558–564.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Sivareddy, I., & De, S. (2017). Adsorptive removal of potentially toxic metals (cadmium, copper, nickel and zinc) by chemically treated laterite: Single and multicomponent batch and column study. Journal of Environmental Chemical Engineering, 5, 3273–3289.

    Article  CAS  Google Scholar 

  • Cheung, C. W., Porter, J. F., & Mckay, G. (2000). Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char[J]. Journal of Chemical Technology & Biotechnology, 75(11), 963–970.

    Article  CAS  Google Scholar 

  • Cho, H., Oh, D., & Kim, K. (2005). A study on removal characteristics of heavy metals from aqueous solution by fly ash. Journal of Hazardous Materials, 127(1–3), 187–195.

    Article  CAS  Google Scholar 

  • Da̧browski, A., Hubicki, Z., Podkościelny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56, 91–106.

    Article  Google Scholar 

  • Ding, Z. H., Hu, X., Morales, V. L., & Gao, B. (2014). Filtration and transport of heavy metals in graphene oxide enabled sand columns. Chemical Engineering Journal, 257, 248–252.

    Article  CAS  Google Scholar 

  • Duan, J. M., & Su, B. (2014). Removal characteristics of cd(II) from acidic aqueous solution by modified steel-making slag[J]. Chemical Engineering Journal, 246, 160–167.

    Article  CAS  Google Scholar 

  • Dubey, S. P., & Gopal, K. (2007). Adsorption of chromium(VI) on low cost adsorbents derived from agr. icultural waste material: a comparative study. Journal of Hazardous Materials, 145(3), 465–470.

    Article  CAS  Google Scholar 

  • Fang, B. B., Chu, Z., Yang, Y., Sun, X. Y., Huang, W. P., Li, X. F., & Wang, L. J. (2013). Characterization of stainless steel and wire rope pickling sludge. Advanced Materials Research. Trans Tech Publications, 726, 2130–2134.

  • Gerente, C., Lee, V. K. C., Cloirec, P. L., & McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review. Critical Reviews in Environmental Science and Technology, 37(1), 41–127.

    Article  CAS  Google Scholar 

  • González-Muñoz, M. J., Rodríguez, M. A., Luque, S., Álvarez, J. R. (2006). Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination, 200, 742–744.

  • Ho, Y. S., & McKay, G. (2004). Sorption of copper (II) from aqueous solution by peat[J]. Water, Air, & Soil Pollution, 158(1), 77–97.

    Article  CAS  Google Scholar 

  • Kim, D. H., Shin, M. C., Choi, H. D., Seo, C. I., & Baek, K. (2008). Removal mechanisms of copper using steel-making slag: Adsorption and precipitation. Desalination, 223(1–3), 283–289.

    Article  CAS  Google Scholar 

  • Kobya, M., Demirbas, E., Senturk, E., & Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology, 96(13), 1518–1521.

    Article  CAS  Google Scholar 

  • Krishnani, K. K., Meng, X., Christodoulatos, C., & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153, 1222–1234.

    Article  CAS  Google Scholar 

  • Manohar, D. M., Noeline, B. F., & Anirudhan, T. S. (2006). Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Applied Clay Science, 31(3–4), 194–206.

    Article  CAS  Google Scholar 

  • Mendoza-Carranza, M., Sepulveda-Lozada, A., Dias-Ferreira, C., & Geissen, V. (2016). Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environmental Pollution, 210, 155–165.

    Article  CAS  Google Scholar 

  • Molina, A., & Poole, C. (2004). A comparative study using two methods to produce zeolites from fly ash[J]. Minerals Engineering, 17(2), 167–173.

    Article  CAS  Google Scholar 

  • Monroy, M., Maceda-Veiga, A., & de Sostoa, A. (2014). Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern. Science of the Total Environment, 487, 233–244.

    Article  CAS  Google Scholar 

  • Oh, C., Rhee, S., Oh, M., & Park, J. (2012). Removal characteristics of as(III) and as(V) from acidic aqueous solution by steel making slag. Journal of Hazardous Materials, 213-214, 147–155.

    Article  CAS  Google Scholar 

  • Ortiz, N. P., Pires, M. A. F., & Bressiani, J. C. (2001). Use of steel converter slag as Ni adsorber to wastewater treatment. Waste Management, 21, 631–635.

    Article  CAS  Google Scholar 

  • Pan, K., & Wang, W. X. (2012). Trace metal contamination in estuarine and coastal environments in China. Science of The Total Environment, 421-422, 3–16.

    Article  CAS  Google Scholar 

  • Potgieter, J. H., Potgieter-Vermaak, S. S., & Kalibantonga, P. D. (2006). Heavy metals removal from solution by palygorskite clay. Minerals Engineering, 19(5), 463–470.

    Article  CAS  Google Scholar 

  • Rao, S. R. (2011). Resource recovery and recycling from metallurgical wastes (Vol. 7). Amsterdam: Elsevier.

    Google Scholar 

  • Raval, N. P., Shah, P. U., & Shah, N. K. (2016). Adsorptive removal of nickel(II) ions from aqueous environment: A review. Journal of Environmental Management, 179, 1–20.

    Article  CAS  Google Scholar 

  • Saeed, A., Iqbal, M., & Akhtar, M. W. (2005). Removal and recovery of lead (II) from single and multimetal (cd, cu, Ni, Zn) solutions by crop milling waste (black gram husk). Journal of Hazardous Materials, 117(1), 65–73.

    Article  CAS  Google Scholar 

  • Squadrone, S., Brizio, P., Stella, C., Prearo, M., Pastorino, P., Serracca, L., Ercolini, C., & Abete, M. C. (2016). Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy). Environmental Pollution., 215, 77–83.

    Article  CAS  Google Scholar 

  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review. Bioresource Technology, 99(14), 6017–6027.

    Article  CAS  Google Scholar 

  • Thanh, D. N., Novák, P., Vejpravova, J., Vu, H. N., Lederer, J., & Munshi, T. (2018). Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. Journal of magnetism and magnetic materials, 2017. Journal of Magnetism and Magnetic Materials., 456(15), 451–460.

    Article  CAS  Google Scholar 

  • Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462.

    Article  CAS  Google Scholar 

  • Xue, Y., Wu, S., & Zhou, M. (2013). Adsorption characterization of cu(II) from aqueous solution onto basic oxygen furnace slag. Chemical Engineering Journal., 231, 355–364.

    Article  CAS  Google Scholar 

  • Ye, J., Cong, X. N., Zhang, P. Y., Hoffmann, E., Zeng, G. M., Liu, Y., Fang, W., Wu, Y., & Zhang, H. B. (2015). Interaction between phosphate and acid-activated neutralized red mud during adsorption process. Applied Surface Science., 356, 128–134.

    Article  CAS  Google Scholar 

  • Zargoosh, K., Abedini, H., Abdolmaleki, A., & Molavian, M. R. (2013). Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles. Industrial & Engineering Chemistry Research, 52(42), 14944–14954.

    Article  CAS  Google Scholar 

  • Zhang, L., & Liu, Y. S. (2016). A novel method for harmless disposal and resource reutilization of steel wire rope sludges. Environmental Science and Pollution Research, 23(19), 19797–19805.

    Article  CAS  Google Scholar 

  • Zhang, C. L., Wang, J. W., Bai, J. F., & Zhao, Y. C. (2012). Recovering of zinc from solid waste bearing sphalerite or zinc ferrite by mechano-chemical extraction in alkaline solution. Procedia Environmental Sciences, 16, 786–790.

    Article  CAS  Google Scholar 

  • Zhao, Y. C., & Stanforth, R. (2000). Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. Journal of Hazardous Materials, 80(1), 223–240.

    CAS  Google Scholar 

Download references

Funding

The study was jointly supported by the National Natural Science Foundation of China (Grant No. 41601538, 51778265), the State’s Major Water Pollution Control and Management Project (Grant No. 2017ZX07202006, 2017ZX07203004), and the Foundation Research Project of Jiangsu Province (No. BK20161100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, M., Wang, L., Chao, J. et al. Removal of Cu2+ and Ni2+ from Wastewater by Using Modified Alkali-Leaching Residual Wire Sludge as Low-Cost Adsorbent. Water Air Soil Pollut 230, 65 (2019). https://doi.org/10.1007/s11270-018-4071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4071-z

Keywords

Navigation