Cellular Responses of Chlorococcum Sp. Algae Exposed to Zinc Oxide Nanoparticles by Using Flow Cytometry

Abstract

Evaluation of 50 nm zinc oxide nanoparticles’ (ZnO-NPs) effects on the microalgae Chlorococcum sp. growing in high salt growth medium (HSM) was investigated by using flow cytometry parameters (cell size (FSC), granularity (SSC), chlorophyll a fluorescence (FL3), and formation of reactive oxygen species (ROS)). Algal cells in exponential growth were exposed to 0–100 mg/L of ZnO-NPs and their physiological responses were measured after 24 and 96 h of treatment. Behavior of ZnO-NPs was analyzed in HSM and results indicated that ZnO-NPs formed agglomeration with a large distribution. Total soluble Zn concentration increased when initial ZnO-NP concentration increased. Significant negative effect on algal cells was observed after 96 h exposition and at high ZnO-NP concentration. This negative impact was evaluated by the significant increase in ROS production, inhibition in the photosynthetic electron transport, and reduction in cell growth. In this study, using flow cytometry multi-parameters might help to prevent and evaluate inhibitory effect of oxide nanoparticles on aquatic photosynthetic microorganisms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aruoja, V., Dubourguier, H.-C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 407, 1461–1468.

    CAS  Article  Google Scholar 

  2. Aubin-Tam, M.-E., & Hamad-Schifferli, K. (2008). Structure and function of nanoparticle–protein conjugates. Biomedical Material, 3, 034001.

  3. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fievet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6, 866–870.

    CAS  Article  Google Scholar 

  4. Cakmak, I., & Marschner, H. (1988). Increase in membrane permeability and exudation in roots of zinc deficient plants. Journal of Plant Physiology, 3, 356–361.

    Article  Google Scholar 

  5. Chang, Y.-N., Zhang, M., Xia, L., Zhang, J., & Xing, G. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5, 2850–2871.

    CAS  Article  Google Scholar 

  6. Collier, J. L. (2000). Flow cytometry and the single cell in phycology. Journal of Phycology, 36, 628–644.

    Article  Google Scholar 

  7. Dawson, K. A., Salvati, A., & Lynch, I. (2009). Nanotoxicology: nanoparticles reconstruct lipids. Nature Nanotechnology, 4, 84–85.

    CAS  Article  Google Scholar 

  8. El Badawy, A., Silva, R. G., Morris, B., Scheckel, K. G., Suidan, M. T., & Tolaymat, T. M. (2011). Surface charge-dependent toxicity of silver nanoparticles. Environmental Science & Technology, 45, 283–287.

    Article  Google Scholar 

  9. Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science & Technology, 41, 8484–8490.

    CAS  Article  Google Scholar 

  10. Franqueira, D., Orosa, M., Torres, E., Herrero, C., & Cid, A. (2000). Potential use of flow cytometry in toxicity studies with microalgae. Science of the Total Environment, 247, 119–126.

    CAS  Article  Google Scholar 

  11. Fujino, T., & Itoh, T. (1998). Changes in the three dimensional architecture of the cell wall during lignification of xylem cells in Eucalyptus tereticomis. Holzforschung, 52, 111–116.

    CAS  Article  Google Scholar 

  12. Fujiwara, K., Suematsu, H., Kiyomiya, E., Aoki, M., Sato, M., & Moritoki, N. (2008). Size-dependent toxicity of silica nano-particles to Chlorella kessleri. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 43, 1167–1173.

    CAS  Article  Google Scholar 

  13. Goodman, C. M., Mc Cusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 15, 897–900.

    CAS  Article  Google Scholar 

  14. Gottschalk, F., & Nowack, B. (2011). The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring, 13, 1145–1155.

    CAS  Article  Google Scholar 

  15. Ji, J., Long, Z., & Lin, D. (2011). Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 170, 525–553.

    CAS  Article  Google Scholar 

  16. Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M., & Bolier, M. (2008). Synthetic Ti02 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution, 156, 233–239.

    CAS  Article  Google Scholar 

  17. Keller, A. A., Wang, H. T., Zhou, D. X., Lenihan, H. S., Cherr, G., Cardinale, B. J., Miller, R., & Ji, Z. X. (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science & Technology, 44, 1962–1967.

    CAS  Article  Google Scholar 

  18. Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., & Lead, J. R. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27, 1825–1851.

    CAS  Article  Google Scholar 

  19. Krug, H. F., & Wick, P. (2011). Nanotoxicology: an interdisciplinary challenge. Angewandte Chemie, International Edition, 50, 1260–1278.

    CAS  Article  Google Scholar 

  20. Lee, W. M., & An, Y. J. (2013). Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere, 91, 536–544.

    CAS  Article  Google Scholar 

  21. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In L. Packer & R. Douce (Eds.), Methods in enzymology Vol. 148 (pp. 350–382). London: Academic Press.

    Google Scholar 

  22. Manzo, S., Miglietta, M. L., Rametta, G., Buono, S., & Francia, G. D. (2013). Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of the Total Environment, 445–446, 371–376.

    Article  Google Scholar 

  23. Misra, S.K., Dybowska, A, Berhanu, D., Luoma, S.N., Valsami-Jones, E. (2012). The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Science of the Total Environment, 438, 225–232.

  24. Mukherjee, S. P., Davoren, M., & Byme, H. J. (2010). In vitro mammalian cytotoxicological study of PAMAM dendrimers - towards quantitative structure activity relationships. Toxicology In Vitro, 24, 1169–1177.

    Article  Google Scholar 

  25. Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Arimori, A., Isobe, M., Tochigi, S., Kondoh, S., Hirai, T., Akase, T., Yamashita, T., Yamashita, K., Yoshida, T., Nagano, K., Abe, Y., Yoshioka, Y., Kamada, H., lmazawa, T., Itoh, N., Tsunoda, S. I., & Tsutsumi, Y. (2010). Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells. Pharmazie, 65, 199–201.

    CAS  Google Scholar 

  26. Oukarroum, A., Polchtchikov, S., Perreault, F., & Popovic, R. (2012). Temperature influence on silver nanoparticles inhibitory on photosystem II photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Environmental Science and Pollution Research, 19, 1755–1762.

    CAS  Article  Google Scholar 

  27. Oukarroum, A., Samadani, M., & Dewez, D. (2014). Influence of pH on the toxicity of silver nanoparticles to the green algae Chlamydomonas acidophila. Water, Air, and Soil Pollution, 225, 2038.

    Article  Google Scholar 

  28. Oukarroum, A., Zaidi, W., Samadani, M., Dewez, D. (2017). Toxicity of nickel oxide nanoparticles on freshwater algal strain of Chlorella vulgaris. Biomed Research International, https://doi.org/10.1155/2017/9528180.

  29. Peng, X., Palma, S., Fisher, N. S., & Wong, S. S. (2011). Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology, 102, 186–196.

    CAS  Article  Google Scholar 

  30. Perreault, F., Oukarroum, A., Melegari, S. P., Matias, W. G., & Popovic, R. (2012). Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere, 87, 1388–1394.

    CAS  Article  Google Scholar 

  31. Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90, 2139021–2139023.

    CAS  Google Scholar 

  32. Saison, C., Perreault, F., Daigle, J. C., Fortin, C., Claverie, J., Morin, M., & Popovic, R. (2010). Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquatic Toxicology, 96, 109–114.

    CAS  Article  Google Scholar 

  33. Sakai, N., Matsui, Y., Nakayama, A., Tsuda, A., & Yoneda, M. (2011). Functional-dependent and size-dependent uptake of nanoparticles in PC 12. Journal of Physics Conference Series, 304, 012049.

    Article  Google Scholar 

  34. Salvatia, A., Nelissen, I., Haase, A., Åberg, C., Moya, S., Jacobs, A., Alnasser, F., Bewersdorff, T., Deville, S., Luch, A., & Dawson, K. A. (2018). Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles. NanoImpact, 9, 42–50.

    Article  Google Scholar 

  35. Suman, T. Y., Rajasree, S. R. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23–30.

    CAS  Article  Google Scholar 

  36. Wang, B., Feng, W. Y., Wang, M., Wang, T. C., Gu, Y. Q., Zhu, M. T., Ouyang, H., Shi, J. W., Zhang, F., Zhao, Y. L., Chai, Z. F., Wang, H. F., & Wang, J. (2008). Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. Journal of Nanoparticle Research, 10, 263–276.

    CAS  Article  Google Scholar 

  37. Wang, Z., Li, J., Zhao, J., & Xing, B. (2011). Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environmental Science & Technology, 45, 6032–6040.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported through funding from the Natural Science and Engineering Research Council of Canada (NSERC), the Canada Research Chairs program (CRC), and Canada Foundation for Innovation.

Author information

Affiliations

Authors

Contributions

Conceived and designed the experiments: AO. Performed the experiments: AO, IH. Analyzed the data: AO, IH, MS. Wrote the paper: AO, MS.

Corresponding authors

Correspondence to Abdallah Oukarroum or Mohamed Siaj.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oukarroum, A., Halimi, I. & Siaj, M. Cellular Responses of Chlorococcum Sp. Algae Exposed to Zinc Oxide Nanoparticles by Using Flow Cytometry. Water Air Soil Pollut 230, 1 (2019). https://doi.org/10.1007/s11270-018-4051-3

Download citation

Keywords

  • Chlorococcum sp.
  • Zinc oxide nanoparticles
  • ZnO-NPs
  • Reactive oxygen species
  • Flow cytometry