Skip to main content
Log in

Effect of the Simultaneous Action of Zinc and Chromium on Arthrobacter spp.

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Bacteria are regarded as the most effective in the detoxification of heavy metals, being environmental compatible. Metalloresistant bacteria are usually found in nature in highly contaminated environment where they interact with a combination of several toxic metals. For the present research, Arthrobacter oxydans and Arthrobacter globiformis have been isolated from the soil samples of the most polluted regions of Georgia, rich with manganese and iron, and contain co-produced toxic metals such as Cr, V, Zn, Ni, Pb, and Mo. We have studied the effects of the metals with different valence/charge on the metalloresistant Arthrobacter spp., the divalent cation—Zn(II) and the hexavalent anion—Cr(VI). The permanent presence of a nontoxic concentration of zinc alone or zinc together with the subtoxic concentration of chromium at the growth of A. oxydans and A. globiformis as batch culture causes the activation of the zinc primary uptake system transporters from the ZIP family (Zrt1). Chromium does not affect the process. The studied Arthrobacter spp. differ by the character of the activation of the antioxidant defense system. Chromium and zinc concomitant action causes the strongest oxidative stress in the case of A. globiformis that is demonstrated by the increased activity of superoxide dismutase (SOD) and catalase. In the case of A. oxydans, the zinc separate action, and the joint action of zinc and chromium decreases the activity of SOD and catalase. The antioxidant system is active in A. globiformis at the prolonged action of metals (96 h), whereas the cells of A. oxyidans activate the other defense mechanisms to survive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerley, D. F., Barak, Y., Lynch, S. V., Curtin, J., & Matin, A. (2006). Effect of chromate stress on Escherichia coli K-12. Journal of Bacteriolology, 188, 3371–3381.

    Article  CAS  Google Scholar 

  • Akshata, J. N., Udayashankara, T. H., & Lokesh, K. S. (2014). Review on bioremediation of heavy metals with microbial isolates and amendments on soil residue. International Journal of Science and Research, 3, 118–123.

  • Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph14010094.

  • Beard, S. J., Hughes, M. N., & Poole, R. K. (1995). Inhibition of the cytochrome M-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiology Letters, 131(2), 205–210.

    Article  CAS  Google Scholar 

  • Beers, R. F., & Sizer, J. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry, 195, 133–140.

    CAS  Google Scholar 

  • Brocklehurst, K. R., Megit, S. J., & Morby, A. P. (2003). Characterization of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochemical and Biophysical Research Communications, 308, 234–239.

    Article  CAS  Google Scholar 

  • Brown, S. D., Thompson, M. R., Verberkmoes, N. C., Chourey, K., Shah, M., Zhou, J. Z., Hettich, R. L., & Thompson, D. K. (2006). Molecular dynamics of the Shewanella oneidensis response to chromate stress. Molecular & Cellular Proteomics, 5, 1054–1071.

    Article  CAS  Google Scholar 

  • Camargo, F., Bento, F., Okeke, B., & Frankenberger, W. T. (2003). Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biological Trace Element Research, 97, 183–194.

    Article  Google Scholar 

  • Cervantes, C., & Campos-Garcıa, J. (2007). Reduction and efflux of chromate by bacteria. In D. H. Nies & S. Silver (Eds.), Molecular microbiology of heavy metals (pp. 407–419). New York: Springer.

    Chapter  Google Scholar 

  • Daud, M. K., Mei, L., Variath, M. T., Ali, S., Li, C., Rafiq, M. T., & Zhu, S. J. (2014). Chromium (VI) uptake and tolerance potential in cotton cultivars: effect on their root physiology, ultramorphology, and oxidative metabolism. BioMed Research International. https://doi.org/10.1155/2014/975946.

  • Eide, D. J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochimica et Biophysica Acta (Molecular Cell Research), 1763, 711–722.

    Article  CAS  Google Scholar 

  • Eng, B. H., Guerinot, M. L., Eide, D., & Saier, M. H., Jr. (1998). Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. Journal of Membrane Biology, 166, 1–7.

    Article  CAS  Google Scholar 

  • Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medical Chemistry, 1, 529–539.

    Article  CAS  Google Scholar 

  • Girard, B., & Snell, E. (1983). Biochemical factors. In P. Gerhardt (Ed.), Manual of methods for general bacteriology (pp. 198–276). Moscow: Mir.

    Google Scholar 

  • Gitan, R. S., Luo, H., Rodgers, J., Broderius, M., & Eide, D. (1998). Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. The Journal of Biological Chemistry, 273, 28617–28624.

    Article  CAS  Google Scholar 

  • Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta, 1465, 190–198.

    Article  CAS  Google Scholar 

  • Gupta, A., Joia, J., Sood, A., Sood, R., Sidhu, C., & Kaur, G. (2016). Microbes as potential tool for remediation of heavy metals: a review. Journal of Microbial & Biochemical Technology, 8(4), 364–372.

    Article  CAS  Google Scholar 

  • Hynninen, A. (2010). Zinc, cadmium and lead resistance mechanisms in bacteria and their contribution to biosensing. Dissertation, University of Helsinki.

  • Joutey, N. T., Bahafid, W., Sayel, H., Ananou, S., & El Ghachtouli, N. (2013). Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou river (Morocco). Environmental Science and Pollution Research, 21(4), 3060–3072.

    Article  Google Scholar 

  • Joutey, N. T., Sayel, H., Bahafid, W., & El Ghachtouli, N. (2015). Mechanisms of hexavalent chromium resistance and removal by microorganisms. Reviews of Environmental Contamination and Toxicology, 233, 45–69.

    CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  • Li, S., Zhou, X., Huang, Y., Zhu, L., Zhang, S., Zhao, Y., Guo, J., Chen, J., & Chen, R. (2013) Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology. https://doi.org/10.1186/1471-2229-13-114.

  • McCall, K. A., Huang, C., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. The Journal of Nutrition. https://doi.org/10.1093/jn/130.5.1437S.

  • Ngwenya, N., & Chirwa, E. M. N. (2011). Biological removal of cationic fission products from nuclear wastewater. Water Science and Technology, 63, 124–128.

    Article  CAS  Google Scholar 

  • Opperman, D. J., & van Heerden, E. (2008). A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01. FEMS Microbiology Letters, 280, 210–218.

    Article  CAS  Google Scholar 

  • Scheublin, T. R., & Leveau, J. H. J. (2013). Isolation of Arthrobacter species from the phylloshere and demonstration of their epiphytic fitness. MicrobiologyOpen, 2, 205–213.

    Article  CAS  Google Scholar 

  • Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365.

    CAS  Google Scholar 

  • Steinman, H. M. (1985). Bacteriocuprein superoxide dismutases in pseudomonads. Journal of Bacteriology, 162, 1255–1260.

    CAS  Google Scholar 

  • Stoyanov, J. V., & Brown, N. L. (2003). The Escherichia coli copper-responsive copA promoter is activated by gold. The Journal of Biological Chemistry, 278, 1407–1410.

    Article  CAS  Google Scholar 

  • Stoyanov, J. V., Hobman, J. L., & Brown, N. L. (2001). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Molecular Microbiology, 39, 502–511.

    Article  CAS  Google Scholar 

  • Tang, M., Chen, J., Sun, Y., Tong, Y., & Liu, Y. (2014). The absorption and scavenging ability of a bacillus in heavy metal contaminated soils (Pb, Zn and Cr). African Journal of Environmental Science and Technology, 8, 476–481.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology, volume 3: Environmental toxicology (pp. 133–164). New York: Springer.

    Chapter  Google Scholar 

  • Tsibakhashvili, N. Y., Kalabegishvili, T. L., Rcheulishvili, A. N., Ginturi, E. N., Lomidze, L. G., Gvarjaladze, D. N., & Rcheulishvili, O. A. (2011). Effect of Zn(II) on the reduction and accumulation of Cr(VI) by Arthrobacter species. Journal of Industrial Microbiology and Biotechnology, 38(11), 1803–1808.

    Article  CAS  Google Scholar 

  • Valko, M., Jomova, K., Rhodes, C. J., Kuca, K., & Musilek, K. (2016). Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Archives of Toxicology, 90(1), 1–37.

    Article  CAS  Google Scholar 

  • Viti, C., Marchi, E., Decorosi, F., & Giovannetti, L. (2014). Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiology Reviews, 38, 633–659.

    Article  CAS  Google Scholar 

  • Westerberg, K., Elvang, A. M., Stackebrandt, E., & Jansson, J. K. (2000). Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. International Journal of Systematic and Evolutionary Microbiology, 50(6), 2083–2092.

    Article  CAS  Google Scholar 

  • Yoon, K. P., Misra, T. K., & Silver, S. (1991). Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. Journal of Bacteriology, 173, 7643–7649.

    Article  CAS  Google Scholar 

  • Zhao, H., & Eide, D. (1996). The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proceedings of the National Academy of Sciences of the United States of America, 93, 2454–2458.

    Article  CAS  Google Scholar 

  • Zhao, H., & Eide, D. J. (1997). Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae. Molecular and Cellular Biology, 17(9), 5044–5052.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants (#2016-39) from the Shota Rustaveli National Science Foundation (SRNSF) and (#6304) from the Science and Technology Center in Ukraine (STCU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nino Asatiani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asatiani, N., Kartvelishvili, T., Sapojnikova, N. et al. Effect of the Simultaneous Action of Zinc and Chromium on Arthrobacter spp.. Water Air Soil Pollut 229, 395 (2018). https://doi.org/10.1007/s11270-018-4046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4046-0

Keywords

Navigation