Skip to main content
Log in

Coagulation Behavior and Floc Properties of Dosing Different Alkaline Neutralizers into the Fenton Oxidation Effluent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Neutralization is the necessary operation to ensure the Fenton effluent pH. In situ coagulation can be induced during neutralization. In this study, three types of alkaline neutralizers (Ca(OH)2, NaOH, and Ca(OH)2 + NaOH) were added into the Fenton oxidized PSE to control the effluent pH of 6 to 9. The coagulation behavior, floc structure, and properties were investigated. The results indicated that the coagulation with the adding of three neutralizers can remove 9.68 to 24.02% of the TOC. Ca(OH)2 exhibited the highest TOC removal efficiency at the dosage of 0.4 g/L. Charge neutralization ability was in the following order: Ca(OH)2 > Ca(OH)2 + NaOH > NaOH. Ca(OH)2 and Ca(OH)2 + NaOH showed the increase of floc growth rate with the increase of agent dosage, especially for Ca(OH)2 + NaOH. Moreover, Df of NaOH flocs was higher than that of Ca(OH)2 and Ca(OH)2 + NaOH, indicating the floc formed by NaOH was more compact than that of Ca(OH)2. The main coagulation process of three neutralizers was different, and it was also affected by the agent dosage (or pH). When the dosage was 0.35 g/L (pH 6–7.5), the complexation, adsorption, and bridging were the predominant processes while charge neutralization gradually became the main coagulation process for Ca(OH)2 and Ca(OH)2 + NaOH with the increase of dosage (pH 7.5–9).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A/O:

Anoxic/oxic process

AOPs:

Advanced oxidation process

Ca(OH)2 :

Calcium hydroxide

COD:

Chemical oxygen demand

d 50 :

The median volumetric diameter

D F :

Fractal dimension

DOC:

Dissolved organic carbon

DOM:

Dissolved organic matters

Fe(OH)3 :

Ferric hydroxide

FT-IR:

Infrared spectroscopy

HNO3 :

Nitric acid

H2O2 :

Hydrogen peroxide

HO·:

Hydroxyl radicals

IPP:

Image pro plus

KBr:

Potassium bromide

NaOH:

Sodium hydroxide

PSE:

Petrochemical secondary effluent

PCWWTP:

Petrochemical wastewater treatment plant

RSM:

Response surface methodology

SEM:

Scanning electron microscopy

SS:

Suspended solids

TEM:

Transmission electron microscopy

TOC:

Total organic carbon

W:

Weight

XRD:

X-ray diffractometer

References

  • Adgar, A., Cox, C. S., & Jones, C. A. (2005). Enhancement of coagulation control using the streaming current detector. Bioprocess and Biosystems Engineering, 27, 349–357.

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water & wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Bolobajev, J., Kattel, E., Viisimaa, M., Goi, A., Trapido, M., Tenno, T., & Dulova, N. (2014). Reuse of ferric sludge as an iron source for the Fenton-based process in wastewater treatment. Chemical Engineering Journal, 255, 8–13.

    Article  CAS  Google Scholar 

  • Bushell, G. C., Yan, Y. D., Woodfield, D., Raper, J., & Amal, R. (2002). On techniques for the measurement of the mass fractal dimension of aggregates. Advances in Colloid and Interface Science, 95, 1–50.

    Article  CAS  Google Scholar 

  • Cao, G. M., Sheng, M., Niu, W. F., Fei, Y. L., & Li, D. (2009). Regeneration and reuse of iron catalyst for Fenton-like reactions. Journal of Hazardous Materials, 172, 1446–1449.

    Article  CAS  Google Scholar 

  • Costa, J. C., Mesquita, D. P., Amaral, A. L., Alves, M. M., & Ferreira, E. C. (2013). Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review. Environmental Science and Pollution Research, 20, 5887–5912.

    Article  CAS  Google Scholar 

  • Du, L. G., Bonner, J. S., Garton, L. S., Ernest, A. N. S., & Autenrieth, R. L. (2002). Modeling coagulantion kinetics incorporating fractal theories: comparison with observed data. Water Research, 36, 1056–1066.

    Article  Google Scholar 

  • Du, X., Qu, F., Liang, H., Li, K., Yu, H., Bai, L., & Li, G. (2014). Removal of antimony (III) from polluted surface water using a hybrid coagulation–flocculation–ultrafiltration (CF–UF) process. Chemical Engineering Journal, 254, 293–301.

    Article  CAS  Google Scholar 

  • Duan, J. M., Cao, X. T., Chen, C., Shi, D. R., Li, G. M., & Mulcahy, D. (2012). Effects of Ca(OH)2 assisted aluminum sulfate coagulation on the removal of humic acid and the formation potentials of tri-halomethans and haloacetic acids in chlorination. Journal of Environmental Sciences, 24(9), 1609–1615.

    Article  CAS  Google Scholar 

  • EI Samrani, A. G., Lartiges, B. S., Montarges-Pelletier, E., Kazpard, V., Barres, O., & Ghanbaja, J. (2004). Clarification of municipal sewage with ferric chloride: the nature of coagulant species. Water Research, 38, 756–768.

    Article  Google Scholar 

  • Fang, Y. M., Zhao, X. D., & Zhang, X. L. (2007). Study on the image, structure and coagulation behavior of polysilicate-aluminum ferric. Ind. Safety Environ. Prot., 33, 22–24.

    Google Scholar 

  • Feng, L., Zheng, H. L., Wang, Y. L., Zhang, S. X., & Xu, B. C. (2007). Ultrasonic-template technology inducing and regulating cationic microblocks in CPAM: characterization, mechanism and sludge flocculation performance. Royal Society of Chemistry Advances, 7, 23444–23456.

  • Fu, Y., Gao, B. Y., Zhang, Y. F., Zhang, X. Y., & Shi, N. (2011). Organic modifier of poly-silicic-ferric coagulant: characterization, treatment of dyeing wastewater and floc change during coagulation. Desalination, 277, 67–73.

    Article  CAS  Google Scholar 

  • Fu, Y., Yu, S., & Han, C. (2009). Morphology and coagulation performance during preparation of poly-silicic-ferric (PFS) coagulant. Chemical Engineering Journal, 149, 1–10.

    Article  CAS  Google Scholar 

  • Fu, Y., Zhang, J. C., Wang, Y. Z., & Yu, Y. Z. (2012). Resource preparation of poly-Al-Zn-Fe (PAZF) coagulant from galvanized aluminum slag: characteristics, simultaneous removal efficiency and mechanism of nitrogen and organic matters. Chemical Engineering Journal, 203, 301–308.

    Article  CAS  Google Scholar 

  • Fu, Y., Yu, S. L., Yu, Y. Z., Qiu, L. P., & Hui, B. (2007). Reaction mode between Si and Fe and evaluation of optimal species in poly-silicic-ferric coagulant. Journal of Environmental Sciences, 19, 678–688.

    Article  CAS  Google Scholar 

  • Gao, B. Y., Hahn, H. H., & Hoffmann, E. (2002). Evaluation of aluminum-silicate polymer composite as a coagulant for water treatment. Water Research, 36, 3573–3581.

    Article  CAS  Google Scholar 

  • Gao, B. Y., Wang, Y., Yue, Q. Y., Wei, J. C., & Li, Q. (2007). Color removal from simulated dye water and actual textile wastewater using a composite coagulant prepared by polyferric chloride and poly-dimethyldiallylammonium chloride. Separation and Purification Technology, 54, 157–163.

    Article  CAS  Google Scholar 

  • Gao, B. Y., Liu, L. L., Zhou, W. Z., Yue, Q. Y., & Li, Q. (2005). Study on the hydrolysis-polymerization process of aluminum in polyaluminum silicate chloride (PASC) flocculant. Acta Scientiae Circumstantiae, 25, 1464–1469.

    CAS  Google Scholar 

  • Grijspeerdt, K., & Verstraete, W. (1996). A sensor for the secondary clarifier based on image analysis. Water Science and Technology, 1, 61–70.

    Article  Google Scholar 

  • Grijspeerdt, K., & Verstraete, W. (1997). Image analysis to estimate the settleability and concentration of activated sludge. Water Research, 5, 1126–1134.

    Article  Google Scholar 

  • Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. (1995). Adsorption and desorption of different organic matter fractions on iron oxide. Geochimica et Cosmochimica Acta, 59, 219–229.

    Article  CAS  Google Scholar 

  • Gu, L., Nie, J. Y., Zhu, N. W., Wang, L., Yuan, H. P., & Shou, Z. Q. (2012). Enhanced Fenton’s degradation of real naphthalene dye intermediate wastewater containing 6-nitro-1-diazo-2-naphthol-4-sulfonic acid: a pilot scale study. Chemical Engineering Journal, 189-190, 108–116.

    Article  CAS  Google Scholar 

  • Hopkins, D. C., & Ducoste, J. J. (2003). Characterizing flocculation under heterogeneous turbulence. Journal of Colloid and Interface Science, 264, 184–194.

    Article  CAS  Google Scholar 

  • Huang, X., Sun, S. L., Gao, B. Y., Yue, Q. Y., Wang, Y., & Li, Q. (2015). Coagulation behavior and floc properties of compound bioflocculant–polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment. Journal of Environmental Sciences, 30, 215–222.

    Article  Google Scholar 

  • Jarvis, P., Jefferson, B., & Parsons, S. A. (2005). Breakage, regrowth, and fractal nature of natural organic matter flocs. Environmental Science & Technology, 39, 2307–2314.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., Zeng, Z., & Pearce, P. (2004). Evaluation of modified clay coagulant for sewage treatment. Chemosphere, 56, 181–185.

    Article  CAS  Google Scholar 

  • Jin, B., Wilen, B. M., & Lant, P. (2003). A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge. Chemical Engineering Journal, 95, 221–234.

    Article  CAS  Google Scholar 

  • Kam, S. K., & Gregory, J. (2002). The interaction of humic substances with cationic polyelectrolytes. Water Research, 35, 3557–3566.

    Article  Google Scholar 

  • Li, C. W., Chen, Y. M., Chiou, Y. C., & Liu, C. K. (2007). Dye wastewater treated by Fenton process with ferrous ions electrolytically generated from iron-containing sludge. Journal of Hazardous Materials, 144, 570–576.

    Article  CAS  Google Scholar 

  • Li, R., He, C., & He, Y. (1995). Preparation and characterization of poly-silicic-cation coagulants by synchronous-polymerization and co-polymerization. Chemical Engineering Journal, 195, 403–407.

    Google Scholar 

  • Li, R. H., Gao, B. Y., Sun, J. Z., & Yue, Q. Y. (2018). Coagulation behavior of kaolin-anionic surfactant simulative wastewater by polyaluminum chloride-polymer dual coagulants. Environmental Science and Pollution Research, 25, 7382–7390.

    Article  CAS  Google Scholar 

  • Li, T., Zhu, Z., Wang, D. S., Yao, C. H., & Tang, H. X. (2006). Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technology, 168, 104–110.

    Article  CAS  Google Scholar 

  • Lin, J. L., Huang, C. P., Chin, C. J. M., & Pan, J. R. (2008). Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patch mechanisms. Water Research, 42, 4457–4466.

    Article  CAS  Google Scholar 

  • Lin, S. H., Lin, C. M., & Leu, H. G. (1999). Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Water Research, 33, 1735–1741.

    Article  CAS  Google Scholar 

  • Maezono, T., Tokumura, M., Sekine, M., & Kawase, Y. (2011). Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere, 82, 1422–1430.

    Article  CAS  Google Scholar 

  • Masomboon, N., Ratanatamskul, C., & Lu, M. C. (2009). Chemical oxidation of 2,6-dimethylaniline in the Fenton process. Environmental Science & Technology, 43, 8629–8634.

    Article  CAS  Google Scholar 

  • Mesquita, D. P., Amaral, A. L., & Ferreira, E. C. (2011). Identifying different types of bulking in an activated sludge system through quantitative image analysis. Chemosphere, 85, 643–652.

    Article  CAS  Google Scholar 

  • Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169, 351–359.

    Article  CAS  Google Scholar 

  • Moussas, P. A., & Zouboulis, A. I. (2008). A study on the properties and coagulation behaviour of modified inorganic coagulant –polyferric silicate sulphate (PFSiS). Separation and Purification Technology, 63, 475–483.

    Article  CAS  Google Scholar 

  • Moussas, P. A., & Zouboulis, A. I. (2009). A new inorganic-organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA). Water Research, 43, 3511–3524.

    Article  CAS  Google Scholar 

  • Niu, X. X., Li, X. L., Zhao, J. H., Ren, Y. G., & Yang, Y. Q. (2011). Preparation and coagulation efficiency of polyaluminium ferric silicate chloride composite coagulant from wastewater of high-purity graphite production. Journal of Environmental Sciences, 23, 1122–1128.

    Article  CAS  Google Scholar 

  • Peres, J. A., de Heredia, J. B., & Dominguez, J. R. (2004). Integrated Fenton’s reagent—coagulation/flocculation process for the treatment of cork processing wastewaters. Journal of Hazardous Materials, 107, 115–121.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & Mackay, A. (2006). Advanced oxidation process for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84.

    Article  CAS  Google Scholar 

  • Selomulya, C., Amal, R., Bushell, G., & Waite, T. D. (2001). Evidence of shear rate dependence on restructuring and breakup of latex aggregates. Journal of Colloid and Interface Science, 236, 66–77.

    Article  Google Scholar 

  • Shih, Y. J., Su, H. T., & Huang, Y. H. (2013). Photoelectro-Fenton mineralization of phenol through optimization of ferrous regeneration. Environmental Science and Pollution Research, 20, 6184–6190.

    Article  CAS  Google Scholar 

  • Sun, T., Liu, L. I., Wang, L. I., & Zhang, Y. P. (2011). Preparation of a novel inorganic polymer coagulant from oil shale ash. Journal of Hazardous Materials, 185, 1264–1272.

    Article  CAS  Google Scholar 

  • Tan, X. P., Liang, S. Q., Chai, L. Y., Zhang, G. W., & Zhang, Y. (2011). Study of roman and IR spectra for Si-Al-Zr-O amorphous bulk in-situ crystallization. Spectroscopy and Spectral Analysis, 31, 123–126.

    CAS  Google Scholar 

  • Tzoupanos, N. D., & Zouboulis, A. I. (2011). Preparation, characterization and application of novel composite coagulants for surface water treatment. Water Research, 45, 3614–3626.

    Article  CAS  Google Scholar 

  • Wang, S., Wang, N., Li, C. L., Zhang, J. J., & Dou, S. (2011). FTIR spectroscopic analysis of Cu2+ adsorption on hematite and bayerite. Spectroscopy and Spectral Analysis, 31, 2403–2406.

    CAS  Google Scholar 

  • Wei, J. C., Gao, B. Y., Yue, Q. Y., Wang, Y., Li, W. W., & Zhu, X. B. (2009). Comparison of coagulation behavior and floc structure characteristic of different polyferric-cationic polymer dual-coagulants in humic acid solution. Water Research, 43, 724–732.

    Article  CAS  Google Scholar 

  • Wen, P. C., & Fung, H. C. (2002). A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method. Water Research, 36, 4583–4591.

    Article  Google Scholar 

  • Wu, C. Y., Zhou, Y. X., Wang, P. C., & Guo, S. J. (2015). Improving hydrolysis acidification by limited aeration in the pretreatment of petrochemical wastewater. Bioresource Technology, 194, 256–262.

    Article  CAS  Google Scholar 

  • Xiao, J., Wang, C., Yu, S. L., Liu, H., & Jiang, C. (2016). Enhancement of Fenton degradation by catechol in a wide initial pH range. Separation and Purification Technology, 169, 202–209.

    Article  CAS  Google Scholar 

  • Xu, M., Wu, C. Y., & Zhou, Y. X. (2017). Advanced treatment of petrochemical secondary effluent by Fenton: performance and organics removal characteristics. Water Science and Technology, 75, 1431–1439.

    Article  CAS  Google Scholar 

  • Yang, Q., Xiong, P. P., Ding, P. Y., Chu, L. B., & Wang, J. L. (2015). Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity. Bioresource Technology, 194, 169–172.

    Article  Google Scholar 

  • Yu, J. C., Wang, D. S., Ge, X. P., Yan, M. Q., & Yang, M. (2006). Flocculation of kaolin particles by two typical polyelectrolytes: a comparative study on the kinetics and floc structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290, 288–294.

    Article  CAS  Google Scholar 

  • Yue, Q. Y., Li, Q., Gao, B. Y., & Wang, Y. (2007). Kinetics of adsorption of disperse dyes by polyepichlorohydrin-dimethylamine cationic polymer/bentonite. Separation and Purification Technology, 54, 279–290.

    Article  CAS  Google Scholar 

  • Zeng, Y. B., & Park, J. B. (2009). Characterization and coagulation performance of a novel inorganic polymer coagulant-poly-zinc-silicate-sulfate. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 334, 147–154.

    Article  CAS  Google Scholar 

  • Zhan, X., Gao, B. Y., Yue, Q. Y., Wang, Y., & Cao, B. C. (2010). Coagulation behavior of polyferric chloride for removing NOM from surface water low concentration of organic matter and its effect on chlorine decay model. Separation and Purification Technology, 75, 61–68.

    Article  CAS  Google Scholar 

  • Zhang, H., Liu, J. G., Qu, C. J., Faheem, Shen, J. Y., Yu, H. X., Jiao, Z. H., Han, W. Q., Sun, X. Y., Li, J. S., & Wang, L. J. (2017). Reuse of Fenton sludge as an iron source for NiFe2O4 synthesis and its application in the Fenton-based process. Journal of Environmental Sciences, 53, 1–8.

    Article  Google Scholar 

  • Zhang, J., Wang, S. G., Wang, C., & Hu, H. Y. (2012). Chemical identification and genotoxicity analysis of petrochemical industrial wastewater. Frontiers of Environmental Science & Engineering, 6, 350–359.

    Article  CAS  Google Scholar 

  • Zhou, F. S., Wang, S. H., Su, J. Z., Sun, H., Zhu, P., Ding, J., Xu, Y. Z., & Wu, J. G. (2003). The infrared spectra and characteristics of PMC-a multicore inorganic polymer flocculant. Fine Chemicals, 20, 615–618 (in Chinese).

  • Zhu, G. C., Zheng, H. L., Chen, W. Y., Fan, W., Zhang, P., & Tshukudu, T. (2012). Preparation of a composite coagulant: polymeric aluminum ferric sulfate (PAFS) for wastewater treatment. Desalination, 285, 315–323.

    Article  CAS  Google Scholar 

Download references

Funding

The work is financially supported by the China special S&T project on treatment and control of water pollution (2017ZX07402002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyong Wu or Yuexi Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Wu, C., Li, Y. et al. Coagulation Behavior and Floc Properties of Dosing Different Alkaline Neutralizers into the Fenton Oxidation Effluent. Water Air Soil Pollut 229, 382 (2018). https://doi.org/10.1007/s11270-018-4030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4030-8

Keywords

Navigation