Skip to main content

Evaluation of Natural Zeolite as a Material for Permeable Reactive Barrier for Remediation of Zinc-Contaminated Groundwater Based on Column Study


The permeable reactive barrier (PRB) filled with natural zeolite plays the role of a reactive treatment zone for remediation of contaminated groundwater. Based on column lab experiments, the volume of remediated solution, the distribution (Kd) and retardation (Rd) coefficients were evaluated, confirming successful removal and retention of zinc from contaminated groundwater. The effect of hydrodynamic dispersion on zinc capturing by zeolite in PRB was evaluated by the hydrodynamic dispersion coefficient (DL) and retarded hydrodynamic dispersion coefficient (DLR) using the Brigham method. For different assumed distances of the barrier, the simulation of one-dimensional zinc concentration profile from the point source through the barrier has been modeled by a simple analytical pulse model. The results show that the flow rate has the most significant effect on the concentration profile, peaks, and broadening of curves. The residence contact time (τ) corresponding to higher Kd and Rd as well as lower DL and DLR values outcomes the optimal range of 6.2–9.4 min. This interval corresponds to the experimental performance at the bed length of 8 and 12 cm and flow rate in the range of 6.38–9.57 PV/h. The calculated minimum thickness and longevity confirm the successful application of zeolite as a material in PRB for remediation of zinc contaminated groundwater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


A :

The cross-sectional area of the column (cm2)

c B :

The concentration of contaminant in solution at time tB (mmol/l)

c o :

The initial contaminant concentration in solution (mmol/l)

c e :

The equilibrium contaminant concentration in solution (mmol/l)

D L :

The hydrodynamic dispersion coefficient (m2/min)

D LR :

The retardation hydrodynamic dispersion coefficient (m2/min)

L :

The zeolite bed length (cm)

L min :

The minimum thickness of zeolite-PRB (cm)

K d :

The solid/solution distribution (or partition) coefficient (l/g)

m :

The zeolite mass (g)

M RT :

The removal efficiency in time t (mmol/cm3 × s)

M T :

The total amount of contaminant removed during column experiments in time tB (mmol)

Q :

The solution flow rate (l/h or PV/h)

q e :

The equilibrium amount of contaminant retained on zeolite (mmol/g)

R d :

The retardation coefficient (−)

t :

The retention time (hours or days)

t B :

The time that corresponds to appearance of contaminant in the effluent from the barrier (h)

t e :

The retention time in equilibrium (h)

T L :

The minimum longevity of zeolite-PRB (years)

U :

The effluent pore volume number (−)

V :

The volume of the contaminant solution passed through the zeolite bed (ml)

V p :

The volume of zeolite corresponding to one bed volume (ml or PV)

V e :

Remediate volume of solution in equilibrium (l)

v f :

The mean pore water velocity (m/min)

v gw :

The linear groundwater velocity (m/min)

x :

The distance of the contaminant plume within the barrier (m)

α :

The retained contaminant percentage (%)

ε :

The zeolite-fixed bed porosity (−)

ρ :

The zeolite bulk density (g/cm3)

τ :

The residence contact time (min)


  1. Abdel Moamen O. A. (2011). Evaluation of synthetic zeolite as engineering passive permeable reactive barrier, Master thesis, Faculty of Engineering at Cairo University, Egypt.

  2. Abdel Rahman, R. O., Abdel Moamen, O. A., Hanafy, M., & Abdel Monem, N. M. (2012). Preliminary investigation of zinc transport through zeolite-X barrier: Linear isotherm assumption. Chemical Engineering Journal, 185-186, 61–70.

    CAS  Article  Google Scholar 

  3. Al-Tabbaa, A., Ayotamuno, J. M., & Martin, R. J. (2000). One-dimensional solute transport in stratified sands at short travel distances. Journal of Hazardous Materials, A73, 1–15.

    Article  Google Scholar 

  4. Barbir, D., Dabić, P., & Lisica, A. (2016). Effects of mud from a zinc-plating plant and zeolite saturated with zinc on Portland cement hydration and properties of hardened cement pastes. Chemical Biochemical Engeenering Quartely, 30, 401–409.

    CAS  Article  Google Scholar 

  5. Brigham, W. E. (1974). Mixing equations in short laboratory column. Society of Petroleum Engineers Journal, 14, 91–99.

    Article  Google Scholar 

  6. Can, Ö., Balköse, D., & Ülkü, S. (2010). Batch and column studies on heavy metal removal using a local zeolitic tuff. Desalination, 259, 17–21.

    CAS  Article  Google Scholar 

  7. Domenico, P. A., & Robbins, G. A. (1985). A new method of contaminant plume analysis. Groundwater, 23(4), 476–485.

    CAS  Article  Google Scholar 

  8. EPA 402-R-99-004A (1999) Understanding variation in partition coefficient, K d, values, vol. I: The Kd model, methods of measurement, and application of chemical reaction codes, Environmental Protection Agency.

  9. Fetter, C. W. (2001). Applied hydrogeology (4th ed.). Upper Saddle River: Prentice-Hall, Inc. Chapter 10.

    Google Scholar 

  10. Gavaskar, A., Gupta, N., Sass, B., Janosy, R., & Hicks, J. (2000). Design guidance for application of permeable reactive barriers for groundwater remediation. In Air Force research laboratory. Panama City: Tyndall Air Force Base.

    Google Scholar 

  11. Huo, L., Qian, T., Hao, J., & Zhao, D. (2013). Sorption and retardation of strontium in saturated Chinese loess: Experimental results and model analysis. Journal of Environmental Radioactivity, 116, 19–27.

    CAS  Article  Google Scholar 

  12. Kleinknecht, S. M., Class, H., & Braun, J. (2017). Experimental study on retardation of a heavy NAPL vapor in partially saturated porous media. Hydrology and Earth System Sciences, 21, 1381–1396.

    CAS  Article  Google Scholar 

  13. Krolo, P., Krstulović, R., Dabić, P., Žmikić, A., & Bubić, A. (2003). Stabilization of hazardous zeolite wastes in cement composites and its effect on hydration. Materials Technology, 37, 327–332.

    CAS  Google Scholar 

  14. Lata, S., Singh, P. K., & Samadder, S. R. (2015). Regeneration of adsorbent and recovery of heavy metals: A review. International journal of Environmental Science and Technology, 12, 1461–1478.

    CAS  Article  Google Scholar 

  15. Maraqa, M. A., Zhao, X., Wallace, R. B., & Voice, T. C. (1998). Retardation coefficients of nonionic organic compounds determined by batch and column techniques. Soil Science Society of America Journal Abstract, 62(1), 142–152.

    CAS  Article  Google Scholar 

  16. Meggyes T., Holzlohner U., & August H. (1997). A multidisciplinary approach to improving the safety and durability of landfill barriers. Contaminated and derelict land, Green 2. International Symposium on Geotechnics Related to the Environment, Kraków.

  17. Miko£ajków, J. (2003). Laboratory methods of estimating the retardation factor of migrating mineral nitrogen compounds in shallow groundwater. Geological Quarterly, 47(1), 91–96.

    Google Scholar 

  18. Misaelides, P. (2011). Application of natural zeolites in environmental remediation: A short review. Microporous and Mesoporous Materials, 144, 15–18.

    CAS  Article  Google Scholar 

  19. Naidu, R., & Birke, V. (2015). Permeable reactive barrier, sustainable groundwater remediation (pp. 33487–32742). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  20. Napia, C., Sinsiri, T., Jaturapitakkul, C., & Chindaprasirt, P. (2012). Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder. Waste Management, 32, 1459–1467.

    CAS  Article  Google Scholar 

  21. NCRP REPORT No. 152 (2005). Performance assessment of near-surface facilities for disposal of low-level radioactive waste. Bethesda: National Council on radiation protection and measurements. Accessed 13 Apr 2017.

  22. Nikashina, V. A., Serova, I. B., Kats, E. M., Tokmachev, M. G., Toropchenova, E. S., Zhilkina, A. V., Kuz’min, T. G., & Bulenova, K. (2017). Permeable reactive barrier based on natural zeolites from Kazakhstan in solving ecological problems: Mathematical model and simulation. Geochemistry International, 55, 38–46.

    CAS  Article  Google Scholar 

  23. Nuić, I., Trgo, M., Perić, J., & Vukojević Medvidović, N. (2015). Uptake of Pb and Zn from a binary solution onto different fixed bed depths of natural zeolite - the BDST model approach. Clay Minerals, 50(1), 91–101.

    Article  Google Scholar 

  24. Obiri-Nyarko, F., Grajales-Mesa, S. J., & Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243–259.

    CAS  Article  Google Scholar 

  25. Obiri-Nyarko, F., Kwiatkowska-Malina, J., Malina, G., & Kasela, T. (2017). Cheogemical modelling for predicting the long-term performance of zeolite PRB to treat lead contaminated groundwater. Journal of Contaminant Hydrology, 177-178, 76–84.

    Article  Google Scholar 

  26. Perić, J., Trgo, M., Vukojević Medvidović, N., & Nuić, I. (2009). The effect of fixed bed depth on lead removal from aqueous solutions. Separation Science and Technology, 44(13), 3113–3127.

    Article  Google Scholar 

  27. Roehl K. E., Hettenloch P., & Czurda K. (2000). Permeable sorption barriers for in-situ remediation of polluted groundwater - reactive materials and reaction mechanisms, The exploitation of natural resources and the consequences, Green 3. International Symposium on Geotechnics Related to the European Environment, Berlin.

  28. Roehl, K. E., Czurda, K., Meggyes, T., Simon, F.-G., & Stewart, D. I. (2005). Permeable reactive barriers. Long-term performance of permeable reactive barriers. In K. E. Roehl, K. Czurda, T. Meggyes, F.-G. Simon, & D. I. Stewart (Eds.), Trace metals and other contaminants in the environment (Vol. 7). Amsterdam: Elsevier B. V. Chapter 1.

    Google Scholar 

  29. Shahmohammadi-kalalagh, S., Nazemi, A., Babazadeh, H., & Manshouri, M. (2012). Estimating lead and copper transport parameters from unsaturated clay soil column. International Research Journal of Applied and Basic Sciences, 3(4), 675–681.

    CAS  Google Scholar 

  30. Technology Evaluation Report TE-97-01 (1997). Remediation of metals-contaminated soils and groundwater, Ground-water remediation technologies analysis center.

  31. Tsai, S. C., Wang, T. H., Jan, Y. L., Wei, Y. Y., & Teng, S. P. (2008). Comparison of different methods to determine the retardation factor of 137Cs transport through granite in column experiments. Journal of Radioanalytical and Nuclear Chemistry, 275(2), 351–354.

    CAS  Article  Google Scholar 

  32. Ugrina, M., Vukojević Medvidović, N., Perić, J., & Trgo, M. (2015). A study of kinetics and successive sorption/desorption of Zn and Cd uptake onto iron-modified zeolite. Clay Minerals, 50(1), 117–132.

    CAS  Article  Google Scholar 

  33. van Genuchten, M. Th., & Alves, W. J. (1982). Analytical solutions of the one-dimensional convective-dispersive solute transport equation. U.S. Department of Agriculture, Technical Bulletin No.1661, pp 151.

  34. Volesky, B. (2001). Detoxification of metal-bearing effluents: Biosorption for next century. Hydrometallurgy, 59, 203–216.

    CAS  Article  Google Scholar 

  35. Vukojević Medvidović, N., Perić, J., & Trgo, M. (2006). Column performance in lead removal from aqueous solutions by fixed bed of natural zeolite-clinoptilolite. Separation and Purification Technology, 49, 237–244.

    Article  Google Scholar 

  36. Vukojević Medvidović, N., Perić, J., Trgo, M., & Mužek, M. N. (2007). Removal of lead ions by fixed bed of clinoptilolite: the effect of flow rate. Microporous and Mesoporous Materials, 105(3), 298–304.

    Article  Google Scholar 

  37. Vukojević Medvidović, N., Perić, J., & Trgo, M. (2008). Testing of breakthrough curves for removal of lead ions from aqueous solutions by natural zeolite-clinoptilolite according to the clark kinetic equation. Separation Science and Technology, 43(4), 944–959.

    Article  Google Scholar 

  38. Vukojević Medvidović, N., Perić, J., Trgo, M., Nuić, I., & Ugrina, M. (2013). Design of fixed bed column for lead removal on natural zeolite based on batch studies. Chemical and Biochemical Engineering Quarterly, 27(1), 21–28.

    Google Scholar 

  39. Woinarski, A. Z., Stevens, G. W., & Snape, I. (2006). A natural zeolite permeable reactive barrier to treat heavy-metal contaminated waters in Antarctica - kinetic and fixed bed study, Trans IchemE, Part B. Process Safety and Environmental Protection, 84(B2), 109–116.

    CAS  Article  Google Scholar 

  40. Zhao, Z., Jing, L., & Neretnieks, I. (2010). Evaluation of hydrodynamic dispersion parameters in fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 2(3), 243–254.

    Article  Google Scholar 

  41. Zhou, D., Li, Y., Zhang, Y., Zhang, C., Li, X., Chen, Z., Huang, J., Li, X., Flores, G., & Kamon, M. (2014). Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. Journal of Contaminant Hydrology, 168, 1–16.

    CAS  Article  Google Scholar 

Download references


This study has been financially supported by the Croatian Science Foundation within the scope of the NAZELLT project (IP-11-2013-4981).

Author information



Corresponding author

Correspondence to Ivona Nuić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vukojević Medvidović, N., Nuić, I., Ugrina, M. et al. Evaluation of Natural Zeolite as a Material for Permeable Reactive Barrier for Remediation of Zinc-Contaminated Groundwater Based on Column Study. Water Air Soil Pollut 229, 367 (2018).

Download citation


  • Zeolite
  • Zinc permeable reactive barrier
  • Analytical pulse model
  • Longevity of PRB