Water, Air, & Soil Pollution

, 229:352 | Cite as

Effects of Light and Potassium Ion on Buoyancy Regulation with Gas Vesicle in a Cyanobacterium Microcystis aeruginosa NIES-843

  • Kai WeiEmail author
  • Yoshimasa Amano
  • Motoi Machida
  • Hirohiko Asukabe
  • Ken-ichi Harada


In this study, we confirmed the effects of light and K+ concentration on the buoyancy of the cyanobacterium Microcystis aeruginosa (Kutzing) Lemmermann (NIES-843), and the relationship between the gas vesicle and buoyancy of M. aeruginosa was revealed through the culture experiment. The results showed that under laboratory conditions, light illumination and K+ concentration strongly affected the flotation and settlement of M. aeruginosa, and that the floating and settling cycle of M. aeruginosa could be reproduced in a test tube by controlling light illuminance. The ability of M. aeruginosa buoyancy weakened with the increase in the K+ concentration, and M. aeruginosa could not exhibit buoyancy at the K+ concentration of 0.03 mol/L. The phase-contrast microscope observation revealed that M. aeruginosa that floated on the water surface had gas vesicles, while none of the gas vesicles was detected for M. aeruginosa at the bottom of a test tube.


Microcystis Gas vesicle Buoyancy Sedimentation 



We thank Dr. Takayuki Negishi, Meijo University, Japan, for his fruitful and helpful discussions about the phase-contrast microscope.


  1. Ahn, C.-Y., Park, D.-K., Kim, H.-S., Chung, A.-S., & Oh, H.-M. (2004). K: Fe ratio as an indicator of cyanobacterial bloom in a eutrophic lake. Journal of Microbiology and Biotechnology, 14(2), 290–296.Google Scholar
  2. Allison, E. M., & Walsby, A. (1981). The role of potassium in the control of turgor pressure in a gas-vacuolate blue-green alga. Journal of Experimental Botany, 32(1), 241–249.CrossRefGoogle Scholar
  3. Beard, S. J., Hayes, P. K., Pfeifer, F., & Walsby, A. E. (2002). The sequence of the major gas vesicle protein, GvpA, influences the width and strength of halobacterial gas vesicles. FEMS Microbiology Letters, 213(2), 149–157.CrossRefGoogle Scholar
  4. Chapra, S. C., Dove, A., & Warren, G. J. (2012). Long-term trends of Great Lakes major ion chemistry. Journal of Great Lakes Research, 38(3), 550–560.CrossRefGoogle Scholar
  5. Chu, Z., Jin, X., Yang, B., & Zeng, Q. (2007). Buoyancy regulation of Microcystis flos-aquae during phosphorus-limited and nitrogen-limited growth. Journal of Plankton Research, 29(9), 739–745.CrossRefGoogle Scholar
  6. Damerval, T., Guglielmi, G., Houmard, J., & De Marsac, N. T. (1991). Hormogonium differentiation in the cyanobacterium Calothrix: a photoregulated developmental process. The Plant Cell, 3(2), 191–201.CrossRefGoogle Scholar
  7. Dervaux, J., Mejean, A., & Brunet, P. (2015). Irreversible collective migration of cyanobacteria in eutrophic conditions. PLoS One, 10(3), e0120906.CrossRefGoogle Scholar
  8. Garrity, G. M. (2012). Bergey’s Manual of Systematic Bacteriology: volume one: the archaea and the deeply branching and phototrophic bacteria: Springer Science & Business Media.Google Scholar
  9. González-Fernández, C., & Ballesteros, M. (2012). Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnology Advances, 30(6), 1655–1661.CrossRefGoogle Scholar
  10. Hayes, P., Buchholz, B., & Walsby, A. (1992). Gas vesicles are strengthened by the outer-surface protein, GvpC. Archives of Microbiology, 157(3), 229–234.CrossRefGoogle Scholar
  11. Imai, H., Chang, K.-H., Kusaba, M., & Nakano, S.-I. (2008). Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. Journal of Plankton Research, 31(2), 171–178.CrossRefGoogle Scholar
  12. Kromkamp, J. C., & Mur, L. R. (1984). Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content. FEMS Microbiology Letters, 25(1), 105–109.CrossRefGoogle Scholar
  13. Kromkamp, J., Botterweg, J., & Mur, L. R. (1988). Buoyancy regulation in Microcystis aeruginosa grown at different temperatures. FEMS Microbiology Letters, 53(3–4), 231–237.CrossRefGoogle Scholar
  14. Madigan, M. T., Martinko, J. M., & Parker, J. (2017). Brock biology of microorganisms (vol. 13): Pearson.Google Scholar
  15. Novina, C., Meister, G., Ostermeier, M., & Xiong, T. (2017). Systems and methods for genome modification and regulation. US Patent App. 15/539,256.Google Scholar
  16. Pfeifer, F. (2012). Distribution, formation and regulation of gas vesicles. Nature Reviews Microbiology, 10(10), 705.CrossRefGoogle Scholar
  17. Sato, M., Amano, Y., Machida, M., & Imazeki, F. (2017). Colony formation of highly dispersed Microcystis aeruginosa by controlling extracellular polysaccharides and calcium ion concentrations in aquatic solution. Limnology, 18(1), 111–119.CrossRefGoogle Scholar
  18. Sigee, D. (2005). Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the aquatic environment: John Wiley & Sons.Google Scholar
  19. Sugimoto, K., Amano, Y., Machida, M., Imazeki, F. (2014). Effects of nutrient concentration and light exposure on the buoyancy of subcultured strain Microcystis aeruginosa. The 28th Conference on Environmental Information Science, Vol.28, 161–166.Google Scholar
  20. Thomas, R., & Walsby, A. E. (1986). The effect of temperature on recovery of buoyancy by Microcystis. Microbiology, 132(6), 1665–1672.CrossRefGoogle Scholar
  21. Walsby. (1994). Gas vesicles. Microbiological Reviews, 58(1), 94–144.Google Scholar
  22. Walsby, A. E., Hayes, P. K., Boje, R., & Stal, L. J. (1997). The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. The New Phytologist, 136(3), 407–417.CrossRefGoogle Scholar
  23. Wang, Y.-W., Zhao, J., Li, J.-H., Li, S.-S., Zhang, L.-H., & Wu, M. (2011). Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa. Current Microbiology, 62(2), 679–683.CrossRefGoogle Scholar
  24. Watson, S. B., Ridal, J., & Boyer, G. L. (2008). Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65(8), 1779–1796.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kai Wei
    • 1
    Email author
  • Yoshimasa Amano
    • 2
    • 3
  • Motoi Machida
    • 2
    • 3
  • Hirohiko Asukabe
    • 4
  • Ken-ichi Harada
    • 4
  1. 1.Graduate School of Science and EngineeringChiba UniversityChibaJapan
  2. 2.Graduate School of EngineeringChiba UniversityChibaJapan
  3. 3.Safety and Health OrganizationChiba UniversityChibaJapan
  4. 4.Graduate School of Environmental and Human Science and Faculty of PharmacyMeijo UniversityNagoyaJapan

Personalised recommendations