Skip to main content

Adsorption of Ammonium in Aqueous Solutions by the Modified Biochar and its Application as an Effective N-Fertilizer

Abstract

Water body contamination by ammonium is of major concern because it poses huge risks and harm to the environment and human health. Biochar derived from waste spruce sawdust was modified by soaking it into HNO3 and Na2CO3 to obtain a low-cost and high-efficiency adsorbent. The factors affecting the removal of ammonium from aqueous solutions, the mechanisms by which ammonium was adsorbed by the modified biochar, and the potential application of the post-adsorption biochar as an effective N-fertilizer were studied. pH and co-existing ions were affirmed to affect the capacity of the modified biochar to adsorb ammonium. The pseudo-second order kinetic model and Freundlich model could best fit the ammonium adsorption data. Cation exchange was the most important mechanism involved in ammonium adsorption by the modified biochar. The high adsorption capacity of the modified biochar makes it a promising alternative adsorbent to remove ammonium from wastewater. Furthermore, the seedling bioassay experiment demonstrated that the post-adsorption biochar can be cycled back directly to the soil as an effective N-fertilizer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Andalib, M., Nakhla, G., & Zhu, J. (2012). High rate biological nutrient removal from high strength wastewater using anaerobic-circulating fluidized bed bioreactor (A-CFBBR). Bioresource Technology, 118, 526–535.

    Article  CAS  Google Scholar 

  • Chen, L., Chen, X. L., Zhou, C. H., Yang, H. M., Ji, S. F., Tong, D. S., Zhong, Z. K., Yu, W. H., & Chu, M. Q. (2017). Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. Journal of Cleaner Production, 156, 648–659.

    Article  CAS  Google Scholar 

  • Cui, X., Hao, H., Zhang, C., He, Z., & Yang, X. (2016). Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of the Total Environment, 539, 566–575.

    Article  CAS  Google Scholar 

  • Gong, Y., Ni, Z., Xiong, Z., Cheng, L., & Xu, X. (2017). Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation. Environmental Science and Pollution Research, 24, 8326–8335.

    Article  CAS  Google Scholar 

  • Halim, A. A., Aziz, H. A., Johari, M. A. M., & Ariffin, K. S. (2010). Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination, 262, 31–35.

    Article  Google Scholar 

  • Hou, J., Huang, L., Yang, Z., Zhao, Y., Deng, C., Chen, Y., & Li, X. (2016). Adsorption of ammonium on biochar prepared from giant reed. Environmental Science and Pollution Research, 23, 19107–19115.

    Article  CAS  Google Scholar 

  • Huang, C., Li, H., & Chen, C. (2008). Effect of surface acidic oxides of activated carbon on adsorption of ammonia. Journal of Hazardous Materials, 159, 523–527.

    Article  CAS  Google Scholar 

  • Jellali, S., Wahab, M. A., Anane, M., Riahi, K., & Jedidi, N. (2011). Biosorption characteristics of ammonium from aqueous solutions onto Posidonia oceanica (L.) fibers. Desalination, 270, 40–49.

    Article  CAS  Google Scholar 

  • Jiuhui, Q. U. (2008). Research progress of novel adsorption processes in water purification: A review. Journal of Environmental Sciences-China, 20, 1–13.

    Article  CAS  Google Scholar 

  • Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., & Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of the Total Environment, 505, 102–112.

    Article  CAS  Google Scholar 

  • Lin, L., Yuan, S., Chen, J., Xu, Z., & Lu, X. (2009). Removal of ammonia nitrogen in wastewater by microwave radiation. Journal of Hazardous Materials, 161, 1063–1068.

    Article  CAS  Google Scholar 

  • Liu, J., Su, Y., Li, Q., Yue, Q., & Gao, B. (2013). Preparation of wheat straw based superabsorbent resins and their applications as adsorbents for ammonium and phosphate removal. Bioresource Technology, 143, 32–39.

    Article  CAS  Google Scholar 

  • Liu, T., Liu, B., & Zhang, W. (2014). Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment. Polish Journal of Environmental Studies, 23, 271–275.

    CAS  Google Scholar 

  • Liu, Z., Xue, Y., Gao, F., Cheng, X., & Yang, K. (2016). Removal of ammonium from aqueous solutions using alkali-modified biochars. Chemical Speciation & Bioavailability, 28, 26–32.

    Article  CAS  Google Scholar 

  • Marañón, E., Ulmanu, M., Fernández, Y., Anger, I., & Castrillón, L. (2006). Removal of ammonium from aqueous solutions with volcanic tuff. Journal of Hazardous Materials, 137, 1402–1409.

    Article  Google Scholar 

  • Nasri, N. S., Hamza, U. D., Ismail, S. N., Ahmed, M. M., & Mohsin, R. (2014). Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. Journal of Cleaner Production, 71, 148–157.

    Article  CAS  Google Scholar 

  • Nguyen, T. L. T., Hermansen, J. E., & Nielsen, R. G. (2013). Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives: The case of wheat straw. Journal of Cleaner Production, 53, 138–148.

    Article  CAS  Google Scholar 

  • Pashai Gatabi, M., Milani Moghaddam, H., & Ghorbani, M. (2016). Point of zero charge of maghemite decorated multiwalled carbon nanotubes fabricated by chemical precipitation method. Journal of Molecular Liquids, 216, 117–125.

    Article  CAS  Google Scholar 

  • Poerschmann, J., Weiner, B., Wedwitschka, H., Baskyr, I., Koehler, R., & Kopinke, F. D. (2014). Characterization of biocoals and dissolved organic matter phases obtained upon hydrothermal carbonization of brewer's spent grain. Bioresource Technology, 164, 162–169.

    Article  CAS  Google Scholar 

  • Qi, D., Liu, S., Cao, Z., & Wang, Y. (2005). Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation & Purification Technology, 44, 229–234.

    Article  Google Scholar 

  • Raji, C., & Anirudhan, T. S. (1998). Batch Cr (VI) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics. Water Research, 32, 3772–3780.

    Article  CAS  Google Scholar 

  • Souza, C., Majuste, D., & Ciminelli, V. S. T. (2014). Effects of surface properties of activated carbon on the adsorption mechanism of copper cyanocomplexes. Hydrometallurgy, 142, 1–11.

    Article  CAS  Google Scholar 

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85.

    Article  CAS  Google Scholar 

  • Tan, X., Liu, Y., Gu, Y., Xu, Y., Zeng, G., Hu, X., Liu, S., Wang, X., Liu, S., & Li, J. (2016). Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333.

    Article  CAS  Google Scholar 

  • Vassileva, P., Tzvetkova, P., & Nickolov, R. (2009). Removal of ammonium ions from aqueous solutions with coal-based activated carbons modified by oxidation. Fuel, 88, 387–390.

    Article  CAS  Google Scholar 

  • Vu, T.M., Trinh, V.T., Doan, D.P., Van, H.T., Nguyen, T.V., Vigneswaran, S., & Ngo, H.H. (2016). Removing ammonium from water using modified corncob-biochar. Science of the Total Environment, 579, 612.

    Article  CAS  Google Scholar 

  • Wahab, M. A., Jellali, S., & Jedidi, N. (2010a). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresource Technology, 101, 5070–5075.

    Article  CAS  Google Scholar 

  • Wahab, M. A., Jellali, S., & Jedidi, N. (2010b). Effect of temperature and pH on the biosorption of ammonium onto Posidonia oceanica fibers: Equilibrium, and kinetic modeling studies. Bioresource Technology, 101, 8606–8615.

    Article  CAS  Google Scholar 

  • Wan, S., Wang, S., Li, Y., & Gao, B. (2017). Functionalizing biochar with mg–Al and mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions. Journal of Industrial and Engineering Chemistry, 47, 246–253.

    Article  CAS  Google Scholar 

  • Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y., Wang, L., Xiao, H., & Deng, S. (2015a). Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4 +), nitrate (NO3 ), and phosphate (PO4 3−). Chemosphere, 119, 646–653.

    Article  CAS  Google Scholar 

  • Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2015b). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126.

    Article  CAS  Google Scholar 

  • Wang, Z., Shen, D., Shen, F., & Li, T. (2016). Phosphate adsorption on lanthanum loaded biochar. Chemosphere, 150, 1–7.

    Article  CAS  Google Scholar 

  • Yang, H.I., Lou, K., Rajapaksha, A.U., Ok, Y.S., Anyia, A.O., & Chang, S.X. (2017). Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environmental Science and Pollution Research, 1–10. https://doi.org/10.1007/s11356-017-8551-2.

    Article  Google Scholar 

  • Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Wang, S., Yao, F., Wang, D., Li, X., & Zeng, G. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, 537–544.

    Article  CAS  Google Scholar 

  • Zheng, H., Wang, Z., Deng, X., Zhao, J., Luo, Y., Novak, J., Herbert, S., & Xing, B. (2013a). Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, 130, 463–471.

    Article  CAS  Google Scholar 

  • Zheng, Z., Zhang, S. D., Li, T. Q., Zhao, F. L., He, Z., Zhao, H. P., Yang, X., Wang, H. L., Jing, Z., & Rafiq, M. T. (2013b). Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 14, 1152–1161.

    Article  Google Scholar 

  • Zhu, Y., Kolar, P., Shah, S. B., Cheng, J. J., & Lim, P. K. (2016). Avocado seed-derived activated carbon for mitigation of aqueous ammonium. Industrial Crops and Products, 92, 34–41.

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (grant numbers U1701243 and 51572089), and Research Project of Guangdong Provincial Department of Science and Technology (2016B020240002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobin Huang.

Electronic Supplementary Material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shang, L., Xu, H., Huang, S. et al. Adsorption of Ammonium in Aqueous Solutions by the Modified Biochar and its Application as an Effective N-Fertilizer. Water Air Soil Pollut 229, 320 (2018). https://doi.org/10.1007/s11270-018-3956-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3956-1

Keywords

  • Waste biomass
  • Modified biochar
  • Ammonium
  • Adsorption characteristics
  • Cation exchange
  • N-fertilizer