Skip to main content
Log in

Examining the Effects of the Destroying Ammunition, Mines and Explosive Devices on the Presence of Heavy Metals in Soil of Open Detonation Pit; Part 2: Determination of Heavy Metal Fractions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

As a result of the destruction of ammunition, mines, and explosive devices by the method of open detonation, the increased concentration of heavy metals is often recorded in the soil of military polygons, which is a serious ecological problem. However, in order to determine the potential risk of such locations to the environment, it is necessary to determine, in addition to the total content, the forms in which the metals are present. In this paper, a sequential extraction method was used to analyze the six fractions of five heavy metals (cadmium, lead, nickel, copper, and zinc) in the soil of the polygon for destruction of ammunition, mines, and explosive devices. Samples were collected from the place of direct detonation (so-called pits) and from the edge of the pit. The aim of this research is determination of metal speciation in order to obtain a better insight in their mobility and risk arising from this. The results showed that heavy metals are predominantly present in the residual, oxide, and organic fractions. Cd and Cu were also significantly present in the mobile fractions due to conducted activities on the polygon. To assess the potential environmental risk of soil, the risk assessment code (RAC) and individual (ICF) and global (GCF) contamination factors were used. According to the RAC, the mobility and bioavailability of the analyzed heavy metals decreases in the following order: Cd > Cu > Zn > Pb > Ni. ICF results show low to moderate risk, while GCF results show low risk in terms of heavy metal contamination in the examined area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdu, N. (2010). Availability, transfer and balances of heavy metals in urban agriculture of West Africa. Kassel, Germany: Kassel University Press GmbH.

    Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, Springer-Verlag (second ed.880 pp). New York.

  • Aiju, L., Yanchun, G., Honghai, W., & Gao Peiling, G. (2012). An assessment of heavy metals contamination in Xiaofu River sediments through chemical speciation study. International Journal of Earth Sciences, 5(5), 1235–1240.

    Google Scholar 

  • Alverbro, K., Björklund, A., Finnveden, G., Hochschorner, E., & Hägvall, J. (2009). A life cycle assessment of destruction of ammunition. Journal of Hazardous Materials, 170, 1101–1109.

    Article  CAS  Google Scholar 

  • Ampleman, G., Thiboutot, S., Diaz, E., Brochu, S., Martel, R., & Walsh, M. (2013). New range design and mitigation methods for sustainable training. Finnish Ministry of Defence: European Conference of Defence and the Environment.

    Google Scholar 

  • Appel, C., & Ma, L. (2002). Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality, 31, 581–589.

    Article  CAS  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105.

    Article  CAS  Google Scholar 

  • Barać, N. M. (2017). Mobilnost i biodostupnost odabranih elemenata u poljoprivrednom zemljištu aluviona reke Ibar, Doktorska disertacija, Univerzitet u Beogradu, Tehnološko-metaluruški fakultet, (In Serbian).

  • Barona, A., Aranguiz, I., & Elias, A. (1999). Assessment of metal extraction, distribution and contamination in surface soils by a 3-step sequential extraction procedure. Chemosphere, 39(11), 1911–1922.

    Article  CAS  Google Scholar 

  • Belanović, S., Knežević, M., Kadović, R., & Danilović, M. (2003). Distribucija nekih teških metala u zemljištima bukovih zajednica NP Đerdap. Glasnik Šumskog fakulteta, Beograd, 88, 17–25 (In Serbian).

    Article  Google Scholar 

  • Best Practice Guide on the Destruction of Conventional Ammunition (2008). Government of the Netherlands. ,FSC.DEL/59/08/Rev.1. https://www.osce.org/fsc/33407?download=true, Accessed 10 January 2018.

  • Bogdanović, D. (2002). Izvori zagađenja zemljišta kadmijumom. Review, Letopis naučnih radova, 1, 32–42 (In Serbian).

    Google Scholar 

  • Bradl, H.B., Kim, C., Kramar, U., Stiiben, D. (2005). Interactions of heavy metals, Chapter 2, Heavy metal in the Environment, Elsevier. 28–164.

  • Canuto, F. A. B., Garcia, C. A. B., Alves, J. P. H., & Passos, E. A. (2013). Mobility and ecological risk assessment of trace metals in polluted estuarine sediments using a sequential extraction scheme. Environmental Monitoring and Assessment, 185(7), 6173–6185.

    Article  CAS  Google Scholar 

  • Cerqueira, B., Vega, F. A., Serra, C., Silva, L.F.O., Andrade, M.L. (2011). Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a Bt horizon sufrace. Journal of Hazardous Materials, 195, 422–431.

  • Certini, G., Scalenghe, R., & Woods, W. I. (2013). The impact of warfare on the soil environment. Earth-Science Reviews, 127, 1–15.

    Article  CAS  Google Scholar 

  • Christensen, T. H. (1984). Cadmium soil sorption at low concentration. I. Effect of time, cadmium load, pH and calcium. Water, Air, and Soil Pollution, 21, 105–114.

    Article  CAS  Google Scholar 

  • Cordos, E., Rautiu, R., Roman, C., Ponta, M., Frentiu, T., Sarkany, A., Fodorpataki, L., Macalik, K., McCormick, C., & Weiss, D. (2003). Characterization of the rivers system in the mining and industrial area of Baia Mare, Romania. European Journal of Mineral Processing and Environmental Protection, 3, 324–335.

    Google Scholar 

  • Dar, G. H. (1996). Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresource Technology, 56, 141–145.

    Article  CAS  Google Scholar 

  • Davutluoglu, O. I., Seckin, G., Ersu, C. B., Yilmaz, T., & Sari, B. (2011). Heavy metal content and distribution in surface sediments of the Seyhan River, Turkey. Journal of Environmental Management, 92, 2250–2259.

    Article  CAS  Google Scholar 

  • de Passos, E. A., Alves, J. C., dos Santos, I. S., do Alves, J. P. H., Garcia, C. A. B., & Spinola Costa, A. C. (2010). Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. Microchemical Journal, 96(1), 50–57.

    Article  CAS  Google Scholar 

  • Dias da Silva, A. A., Brum, T., Barbosa, M. C., & Soares Marques, M. E. (2014). Investigation of a military site for destruction of ammunitions by open detonation with emphasis on Pb and Cu contamination (pp. 1–8). Brasil: XVII Congreso Brasilero de Mecánica dos Solos e Engenharia Geotécnica.

    Google Scholar 

  • Doelman, P., & Haanstra, L. (1984). Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil, 79, 317–327.

    Article  CAS  Google Scholar 

  • Dostava informacija za poligon Glamoč, Hercegbosanske šume d.o.o. Kupres, broj: 01/ 1–1862/15 od 05.11.2015. (in Bosnian).

  • Duddridge, J. E., & Wainwright, M. (1981). Heavy metals in river sediments—calculation of metal adsorption maxima using Langmuir and Freundlich isotherms. Environmental Pollution Series B, Chemical and Physical, 2, 387–397.

    Article  CAS  Google Scholar 

  • Durres (2012.). Stanje u oblasti naoružanja i municije u OS BiH, Ministarstvo odbrane BiH, (In Serbian).

  • Farrah, H., & Pickering, W. F. (1977). The sorption of lead and cadmium species by clay minerals. Australian Journal of Chemistry, 30, 1417–1422.

    Article  CAS  Google Scholar 

  • Ghrefat, H., Jusuf, N., Jamarh, A., & Nazzal, J. (2012). Fractionation and risk assessment of heavy metals in soil samples collected along Zerqa River. Jordan, Environmental Earth Sciences, 66(1), 199–208.

    Article  CAS  Google Scholar 

  • Greičiûté, K., Juozulynas, A., Šurkienė, G., & Valeikienė, V. (2007). Research on soil disturbance and pollution with heavy metals in military grounds. Geologija, no, 57, 14–20.

    Google Scholar 

  • Guillén, M. T., Delgado, J., Albanese, S., Nieto, J. M., Lima, A., & De Vivo, B. (2012). Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). Journal of Geochemical Exploration, 119–120, 32–43.

    Article  CAS  Google Scholar 

  • Guo, P., Xie, Z., Li, J., Kang, C., & Liu, J. (2005). Relationships between fractionations of Pb, Cd, Cu, Zn and Ni and soil properties in urban soils of Changchun, China. Chinese Geographical Science, 15, 179–185.

    Article  Google Scholar 

  • Gworek, B., & Mocek, A. (2003). Comparison of sequential extraction methods with reference to zinc fractions in contaminated soils. Polish Journal of Environmental Studies, 12(1), 41–48.

    CAS  Google Scholar 

  • Hagfors, M. (2013). Destruction of old expired and spoiled munition in Finland—environmental effects of open surface mass detonations, Finnish Defence Forces Technical Research Centre, Explosives and NBC Defence Division, Explosives Technology, European Conference of Defence and the Environment, Finnish Ministry of Defence, 119–128.

  • Han, F. X., Banin, A., Kingery, W. L., Triplett, G. B., Zhou, L. X., Zheng, S. J., & Ding, W. X. (2003). New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8, 113–120.

    Article  CAS  Google Scholar 

  • Hessling, J.L., Esposito, M.P., Traver, R.P., Snow, R.H. (1989). Results of bench-scale research efforts to wash contaminated soils at battery-recycling facilities. Metals Speciation, Separation, and Recovery. Patterson, J.W., Passino, R. (Eds.), Lewis Publishers, Chelsea, MI, 497–514.

  • Ikem, A., Egiebor, O. N., & Nyavor, K. (2003). Trace elements in water, fish and sediment from Tuskegee Lake, southern USA. Water, Air, and Soil Pollution, 149, 51–75.

    Article  CAS  Google Scholar 

  • Inmaculada, R., Ángel, F. J. M., & Abelardo, G. P. (2004). The influence of pH and salinity on the toxicity of heavy metals in sediment to the estuarine clam Ruditapes philippinarum. Environmental Toxicology and Chemistry, 23, 1100–1107.

    Article  Google Scholar 

  • ISO 10381–1:2002, Soil quality - Sampling - Part 1: Guidance on the design of sampling programmes.

  • ISO 10381–2:2002, Soil quality - Sampling - Part 2: Guidance on sampling technique.

  • Jain, C. K. (2004). Metal fractionation study on bed sediments of River Yamuna. India, Water Research, 38, 569–578.

    Article  CAS  Google Scholar 

  • Jamali, M. K., Kazi, T. G., Afridi, H. I., Arain, M. B., Jalbani, N., & Memon, A. R. (2007). Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method. Journal of Environmental Science and Health, Part A, 42, 649–659.

    Article  CAS  Google Scholar 

  • Jena, V., Gupta, S., Dhundhel, R. S., Matic, N., Bilinski, S. F., & Dević, N. (2013). Determination of total heavy metal by sequential extraction from soil. International Journal of Research in Environmental Science and Technology, 3(1), 35–38.

    Google Scholar 

  • Jurinak, J. J., & Bauer, N. (1956). Thermodynamics of zinc adsorption on calcite, dolomite and magnesite-type minerals. Soil Science Society of America Proceedings, 20, 466–471.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Fourth Edition. CRC Press, Taylor Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL.

  • Kashem, M. A., Singh, B. R., & Kawai, S. (2007). Mobility and distribution of cadmium, nickel and zinc in contaminated soil profiles from Bangladesh. Nutrient Cycling in Agroecosystems, 77, 187–198.

    Article  CAS  Google Scholar 

  • Kashem, M. A., Singh, B. R., Imamul Huq, S. M., & Kawai, S. (2011). Fractionation and mobility of cadmium, lead and zinc in some contaminated and non-contaminated soils of Japan. Journal of Soil Science and Environmental Management, 3(9), 241–249.

    Google Scholar 

  • Kastori, R. (1997). Teški metali u životnoj sredini, Naučni institut za ratarstvo i povrtarstvo, Novi Sad, (In Serbian).

  • Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios Rybicka, E., Bril, H., & Puziewicz, J. (2008). Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Chemosphere, 73, 776–784.

    Article  CAS  Google Scholar 

  • Kubová, J., Matúš, P., Bujdoš, M., Hagarová, I., & Medved, J. (2008). Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil–plant metal transfer predictions in contaminated lands. Talanta, 75(4), 1110–1122.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Li, P., Lin, C., Cheng, H., Duan, X., & Lei, K. (2015). Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicology and Environmental Safety, 113, 391–399.

    Article  CAS  Google Scholar 

  • Lighthart, B., Baham, J., & Volk, V. V. (1983). Microbial respiration and chemical speciation in metal-amended soils. Journal of.Environmental Quality, 12, 543–548.

    Article  CAS  Google Scholar 

  • Lin, J.-G., & Chen, S.-Y. (1998). The relationship between adsorption of heavy metal and organic matter in river sediments. Environment International, 24, 345–352.

    Article  CAS  Google Scholar 

  • Lin, Z., Comet, B., Qvarfort, U., & Herbert, R. (1995). The chemical and mineralogical behaviorof Pb in shooting range soils from Central Sweden. Environmental Pollution, 89, 303–309.

    Article  CAS  Google Scholar 

  • Linsday, W. L. (1972). Zinc in Soil and Plant Nutrition. Advances in Agronomy, 24, 147–186.

    Article  Google Scholar 

  • Lu, A., Zhang, S., & Shan, X. (2004). Time effect on the fractionation of heavy metals in soils. Geoderma, 125(3–4), 225–234.

    Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality, 26, 259–264.

    Article  CAS  Google Scholar 

  • Malandrino, M., Abollino, O., Buoso, S., Giacomino, A., La Gioia, C., & Mentasti, E. (2011). Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere, 82, 169–178.

    Article  CAS  Google Scholar 

  • Manninen, S., & Tanskanen, N. (1993). Transfer of lead from shotgun pellets to humus and three plant species in a Finnish shooting range. Archives of Environmental Contamination and Toxicology, 24, 410–414.

    Article  CAS  Google Scholar 

  • Marković, J., Jović, M., Smičiklas, I., Pezo, L., Šljivić-Ivanović, M., Onjia, A., & Popović, A. (2016). Chemical speciation of metals in unpolluted soils of different types: Correlation with soil characteristics and an ANN modelling approach. Journal of Geochemical Exploration, 165, 71–80.

    Article  CAS  Google Scholar 

  • Matong, J. M., Nyaba, L., & Nomngongo, P. N. (2016). Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasmamass spectrometric determination. Chemosphere, 154, 249–257.

    Article  CAS  Google Scholar 

  • Mihelič, B. (2012). Energetske materije - eksplozivi, baruti i pirotehničke smješe, Bezbednost u radu sa ubojnim sredstvima, skladištenje, čuvanje i uništavanje ubojnih sredstava, Kragujevac, (In Serbian).

  • Moore, F., Nematollahi, M. J., & Keshavarzi, B. (2015). Heavy metals fractionation insurface sediments of Gowatr bay-Iran. Environmental Monitoring and Assessment, 187(1), 1–14.

    Article  CAS  Google Scholar 

  • Naji, A., & Ismail, A. R. (2011). Spatial variation and binding behavior of Cu and Pb in surface sediments of Klang River. International Journal of Chemical and Environmental Engineering, 2(2), 91–96.

    CAS  Google Scholar 

  • Nannoni, F., Protano, G., & Riccobono, F. (2011). Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma, 161(1–2), 63–73.

    Article  CAS  Google Scholar 

  • Nemati, K., Bakar, N. K. A., Abas, M. R., & Sobhanzadeh, E. (2011a). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Materials, 192(1), 402–410.

    CAS  Google Scholar 

  • Nemati, K., Bakar, N. K. A., Abas, M. R., Sobhanzadeh, E., & Low, K. H. (2011b). Comparison of unmodified and modified BCR sequential extraction schemes for the fractionation of heavy metals in shrimp aquaculture sludge from Selangor, Malaysia. Environmental Monitoring and Assessment, 176(1–4), 313–320.

    Article  CAS  Google Scholar 

  • Ogundiran, M. B., & Osibanjo, O. (2009). Mobility and speciation of heavy metals in soils impacted by hazardous waste. Chemical Speciation & Bioavailability, 21(2), 59–69.

    Article  CAS  Google Scholar 

  • Olajire, A. A., Ayodele, E. T., Oyedirdan, G. O., & Oluyemi, E. A. (2003). Levels and speciation of heavy metals in soils of industrial southern Nigeria. Environmental Monitoring and Assessment, 85, 135–155.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. (2008). Trace elements as Contaminants and Nutrients: Cosequnces in Ecosystems and Human Health (p. 777). USA: John Wiley & Sons.

    Book  Google Scholar 

  • Pravilnik FBiH 72/09. Pravilnik o utvrđivanju dozvoljenih količina štetnih i opasnih materija u zemljištu i metode njihovog ispitivanja, Službene novine FBiH broj 72/2009 (In Bosnian).

  • Quevauviller, P., Rauret, G., Muntau, H., Ure, A. M., Rubio, R., Lopez-Sanchez, J. F., Fiedler, H. D., & Griepink, B. (1994). Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius. Journal of Analytical Chemistry, 349, 808–814.

    Article  CAS  Google Scholar 

  • Randhawa, N. S., & Broadbent, F. E. (1965). Soil organic matter-metal complexes: 6 stability constants of zinc-humic acid complexes at different pH values. Soil Science, 99, 362–366.

    Article  CAS  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Reddy, K. J., Wan, L., & Gloss, S. P. (1995). Solubility and mobility of copper, zink and lead in acidic enrichments. Plant and Soil, 171, 53–58.

    Article  CAS  Google Scholar 

  • Rule, J.H. (1998). Trace metal cation adsorption in soils: selective chemical extractions and biological availability. In: A. Dabrowski (ed) Adsorption and its applications industry and environmental protection, Vol. II: application in environmental protection. Studies in surface science and catalysis. Elsevier, 319–349.

  • SALW (2004). Ammunitions destruction—environmental releases from open burning (OB) and open detonation (OD) events, SEESAC. http://www.seesac.org/f/tmp/files/publication/304.pdf , Accessed 20. June 2017.

  • Sanders, J. R., & Adams, T. M. M. (1987). The effects of pH and soil type on concentrations of zinc, copper and nickel extracted by calcium chloride from sewage sludge-treated soils. Environmental Pollution, 43, 219–228.

    Article  CAS  Google Scholar 

  • Sarkar, S.K., Favas, P.J.C., Rakshit, D., Satpathy, K.K. (2014). Geochemical speciation and risk assessment of heavy metals in soils and sediments, in: Hernandez-Soriano, M.C. (Ed.), Environmental Risk Assessment of Soil Contamination. In Tech, p. 918.

  • Shiowatana, J., Mclaren, R. G., Chanmekha, N., & Samphao, A. (2001). Fractionation of arsenic in soil by a continuous-flow sequential extraction method. Journal of Environmental Quality, 30, 1940–1949.

    Article  CAS  Google Scholar 

  • Shuman, L. M. (1975). The effect of soil properties on zinc adsorption by soils. Soil Science Society of America Proceedings, 39, 454–458.

    Article  CAS  Google Scholar 

  • Smičiklas, I., Jović, M., Šljivić-Ivanović, M., Mrvić, V., Čakmak, D., & Dimović, S. (2015). Correlation of Sr2+ retention and distribution with properties of different soil types. Geoderma, 253–254, 21–29.

    Article  CAS  Google Scholar 

  • Sungur, A., Soylak, M., Yilmaz, S., & Ozcan, H. (2014). Determination of heavy metals in sediments of the Ergene River by BCR sequential extraction method. Environmental Earth Sciences, 72(9), 3293–3305.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Blsson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analitical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thiboutot, S., Ampleman, G., Brochu, S., Diaz, E., Martel, R., Hawari, J., Sunahara, G., Walsh, M. R., Walsh, M. E., & Jenkins, T. F. (2012). Environmental characterization of military training ranges for munitions – related contaminants: Understanding and minimizing the environmental impacts of live – fire training. International Journal of Energetic Materials and Chemical Propulsion, 11(Issue 1), 17–57.

    Article  CAS  Google Scholar 

  • Thiboutot, S., Ampleman, G., Brochu, S., Diaz, E., Martel, R., Hawari, J., Sunahara, G., Walsh, M.R. and Walsh, M.E. (2013). Canadian Programme on the environmental impacts of munition, European Conference of Defence and the Environment, Finnish Ministry of Defence.

  • Thomas, E. Y. (2015). Assessment of heavy metal concentration and fractionation in selected dumpsite soils within Ibadan Metropolis, Nigeria. Journal of Agriculture and Ecology Research International, 4(3), 117–127.

    Article  Google Scholar 

  • Ure, A., Quevauviller, P., Munteau, H., Griepink, B. (1993). Improvements in the determination of extractable contents of trace metals in soils and sediments prior to certification. Tech. Rep., Community Bureau of reference, Commission of the European Communities.

  • Vega, F. A., Andrade, M. L., & Covelo, E. F. (2010). Influence of soil properties on the sorption and retention of cadmium, copper and lead, separatly and together, by 20 soil horizons: comparasion of linear regression and tree regression analyses. Journal of Hazardous Materials, 174, 522–533.

    Article  CAS  Google Scholar 

  • Vig, K., Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research, 8, 121–135.

    Article  CAS  Google Scholar 

  • Wali, A., Colinet, G., & Ksibi, M. (2014). Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in Sfax, Tunisia. Environmental Research, Engineering and Management, 4(70), 14–26.

    Google Scholar 

  • Yang, Z., Chen, F., Zhang, L., Liua, J., Wu, S., & Kang, M. (2012). Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Marine Pollution Bulletin, 64, 1747–1955.

    Google Scholar 

  • Yao, Z. G., Bao, Z. Y., Gao, P., Zhang, J. L., Guo, Y. P., Hu, Z. J., & Li, B. L. (2006). Speciation of trace elements in sediments from Dongting Lake, Central China, Water Pollution VIII: Modelling, Monitoring and Management. WIT Transaction on Ekology an the Environment, 95, 119–128.

    CAS  Google Scholar 

  • Zauyah, S., Juliana, B., Noorhafizah, R., Fauziah, C.I., Rosenani, A.B. (2004). Concentration and speciation of heavy metals in some cultivated and uncultivated ultisols and inceptisols in Peninsular Malaysia. Super Soil, 3rd Australian New Zealand Soils Conference., 1–5.

  • Zeien, H. (1995). Chemische Extraktionen zur Bestimmung der Bindungsformen von Schwermetallen in Böden (Chemical extractions to identify heavy metal binding forms in soils). Bonner Bodenkundliche Abhandlungen, 17, 284 pp.

  • Zhao, S., Feng, C., Yang, Y., Niu, J., & Shen, Z. (2012). Risk assessment of sedimentary metals in the Yangtze Estuary: new evidence of the relationships between twotypical index methods. Journal of Hazardous Materials, 241–242, 164–172.

    Article  CAS  Google Scholar 

  • Zhu, H., Yuan, X., Zeng, G., Jiang, M., Liang, J., Zhang, C., Yin, J., Huang, H., Liu, Z., & Jiang, H. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China, 22(6), 1470–1477.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Tešan Tomić.

Electronic Supplementary Material

ESM 1

(DOCX 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tešan Tomić, N., Smiljanić, S., Jović, M. et al. Examining the Effects of the Destroying Ammunition, Mines and Explosive Devices on the Presence of Heavy Metals in Soil of Open Detonation Pit; Part 2: Determination of Heavy Metal Fractions. Water Air Soil Pollut 229, 303 (2018). https://doi.org/10.1007/s11270-018-3950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3950-7

Keywords

Navigation