Skip to main content
Log in

Ibuprofen Sorption to Coastal Plain Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Ibuprofen is commonly detected in onsite wastewater systems. Such onsite systems are abundant in coastal plain areas, globally. Coastal plain soils have unique mineralogy. Rapid subsurface transport may occur in coastal plain soils due to their characteristic permeable soils and seasonally high water tables. Laboratory batch sorption studies were conducted on Norfolk, Goldsboro, and Lynchburg, three archetypical coastal plain soils, with varying physicochemical properties, to evaluate ibuprofen sorption. Sorption distribution coefficients (KD values) across all three soils ranged from 0.63 to 1.26 L kg−1. Sorption of ibuprofen to Norfolk and Goldsboro soils was able to be modeled using a Freundlich isotherm; however, the Lynchburg soil, was not, likely due to soil heterogeneity. In general, sorption of ibuprofen was influenced by soil organic carbon content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avdeef, A., Box, K. J., Comer, J. E. A., Hibbert, C., & Tam, K. Y. (1998). Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharmaceutical Research, 15, 209–215.

    Article  CAS  Google Scholar 

  • Baker, J. R., Mihelcic, J. R., Luehrs, D. C., & Hickey, J. P. (1997). Evaluation of estimation methods for organic carbon normalized sorption coefficients. Water Environment Research, 69, 136–145.

    Article  CAS  Google Scholar 

  • Barnes, K. K., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2008). A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I Groundwater. The Science of the Total Environment, 402, 192–200.

    Article  CAS  Google Scholar 

  • Becking, L. B., Kaplan, I. R., & Moore, D. (1960). Limits of the natural environment in terms of pH and oxidation-reduction potentials. The Journal of Geology, 68, 243–284.

    Article  Google Scholar 

  • Behera, S. K., Oh, S. Y., & Park, H. S. (2012). Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. International Journal of Environmental Science and Technology, 9, 85–94.

    Article  CAS  Google Scholar 

  • Benfield, B. (2017). Sorption of ibuprofen to Coastal Plain Soils. MS Thesis. Department of Geological Sciences, East Carolina University, Greenville, NC.

  • Cho, H. H., Huang, H., & Schwab, K. (2011). Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir, 27, 12960–12967.

    Article  CAS  Google Scholar 

  • Daniels, R. B., Gamble, E. E., & Cady, J. G. (1970). Some relations among Coastal Plain soils and geomorphic surfaces in North Carolina. Soil Science Society of America Journal, 34, 648–653.

    Article  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives, 107, 907–938.

    Article  CAS  Google Scholar 

  • Del Rosario, K. L., Mitra, S., Humphrey, C. P., & O'Driscoll, M. A. (2014). Detection of pharmaceuticals and other personal care products in groundwater beneath and adjacent to onsite wastewater treatment systems in a coastal plain shallow aquifer. Science of the Total Environment, 487, 216–223.

    Article  CAS  Google Scholar 

  • Dougherty, J. A., Swarzenski, P. W., Dinicola, R. S., & Reinhard, M. (2010). Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington. Journal of Environmental Quality, 39, 1173–1180.

    Article  CAS  Google Scholar 

  • Duffera, M., White, J. G., & Weisz, R. (2007). Spatial variability of southeastern US Coastal Plain soil physical properties: implications for site-specific management. Geoderma, 137, 327–339.

    Article  Google Scholar 

  • Ericson, H., Thorsén, G., & Kumblad, L. (2010). Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquatic Toxicology, 99, 223–231.

    Article  CAS  Google Scholar 

  • Estevez, E., Hernandez-Moreno, J. M., Fernandez-Vera, J. R., & Palacios-Diaz, M. P. (2014). Ibuprofen adsorption in four agricultural volcanic soils. Science of the Total Environment, 468, 406–414.

    Article  CAS  Google Scholar 

  • Gerstl, Z. (1990). Estimation of organic chemical sorption by soils. Journal of Contaminant Hydrology, 6, 357–375.

    Article  CAS  Google Scholar 

  • Guedidi, H., Reinert, L., Lévêque, J. M., Soneda, Y., Bellakhal, N., & Duclaux, L. (2013). The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen. Carbon, 54, 432–443.

    Article  CAS  Google Scholar 

  • Halling-Sørensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Lützhøft, H. H., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36, 357–393.

    Article  Google Scholar 

  • Han, S., Choi, K., Kim, J., Ji, K., Kim, S., Ahn, B., & Giesy, J. P. (2010). Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquatic Toxicology, 98, 256–264.

    Article  CAS  Google Scholar 

  • Hansch, C., Rockwell, S. D., Jow, P. Y., Leo, A., & Steller, E. E. (1977). Substituent constants for correlation analysis. Journal of Medicinal Chemistry, 20, 304–306.

    Article  CAS  Google Scholar 

  • Heath, R. C. (1983). Basic ground-water hydrology. US Geological Survey.

  • Humphrey Jr, C. P. (2009). Controls on septic system wastewater treatment and shallow groundwater quality in coastal North Carolina. East Carolina University.

  • Karickhoff, S. W. (1984). Organic pollutant sorption in aquatic systems. Journal of Hydraulic Engineering, 110, 707–735.

    Article  Google Scholar 

  • Karickhoff, S. W., Brown, D. S., & Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments. Water Research, 13, 241–248.

    Article  CAS  Google Scholar 

  • Katsoyiannis, A., & Samara, C. (2007). The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research-International, 14, 284–292.

    Article  CAS  Google Scholar 

  • Kenaga, E. E., & Goring, C. A. I. (1980). Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota. Aquatic Toxicology, 707, 78–115.

    Article  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: a national reconnaissance. Environmental Science & Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Langenhoff, A., Inderfurth, N., Veuskens, T., Schraa, G., Blokland, M., Kujawa-Roeleveld, K., & Rijnaarts, H. (2013). Microbial removal of the pharmaceutical compounds ibuprofen and diclofenac from wastewater. BioMed Research International. https://doi.org/10.1155/2013/325806.

    Article  Google Scholar 

  • Maamar, M. B., Lesné, L., Hennig, K., Desdoits-Lethimonier, C., Kilcoyne, K. R., Coiffec, I., & Antignac, J. P. (2017). Ibuprofen results in alterations of human fetal testis development. Scientific Reports, 7, 44184.

    Article  Google Scholar 

  • NC DEHNR (1996). On-site wastewater management: guidance manual. Division of Environmental Health, On-Site Wastewater Section, Raleigh, NC. https://ehs.ncpublichealth.com/oswp/resources.htm. Accessed 27 Mar 2018.

  • Richardson, M. L., & Bowron, J. M. (1985). The fate of pharmaceutical chemicals in the aquatic environment. Journal of Pharmacy and Pharmacology, 37, 1–12.

    Article  CAS  Google Scholar 

  • Sangster, J. (1989). Octanol-water partition coefficients of simple organic compounds. Journal of Physical and Chemical Reference Data, 18, 1111–1229.

    Article  CAS  Google Scholar 

  • Schaider, L. A., Rodgers, K. M. & Rudel, R. A. (2017). Environmental Science & Technology, 51, 7304–7317.

    Article  CAS  Google Scholar 

  • Scheytt, T., Mersmann, P., Lindstädt, R., & Heberer, T. (2005a). Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere, 60, 245–253.

    Article  CAS  Google Scholar 

  • Scheytt, T., Mersmann, P., Lindstädt, R., & Heberer, T. (2005b). 1-Octanol/water partition coefficients of 5 pharmaceuticals from human medical care: carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Water, Air, and Soil Pollution, 165, 3–11.

    Article  CAS  Google Scholar 

  • Scheytt, T. J., Mersmann, P., & Heberer, T. (2006). Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments. Journal of Contaminant Hydrology, 83, 53–69.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., & Westall, J. (1981). Transport of non-polar organic pollutants in a river water–groundwater infiltration system: a systematic approach. Studies in Environmental Science, 17, 569–574.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (1993). Organic acids and bases: acidity constant and partitioning behavior. Environmental Organic Chemistry, 245–274.

  • Soller, D. R., & Mills, H. H. (1991). Surficial geology and geomorphology. In: W.J. Horton, V.A. Zullo (Eds.), The geology of the Carolinas. Carolina geological society fifteenth anniversary volume. (pp. 290–308). KNoxville: University of Tennessee Press.

  • Stuckey, J. L. (1965). North Carolina: its geology and mineral resources. Department of Conservation and Development.

  • Styszko, K., Sosnowska, K., Wojtanowicz, P., Gołaś, J., Gorecki, J., & Macherzynski, M. (2010). Sorption of ibuprofen on sediments from the Dobczyce (Southern Poland) drinking water reservoir. Archives of Environmental Protection, 36, 81–91.

    CAS  Google Scholar 

  • Ternes, T., Bonerz, M., & Schmidt, T. (2001). Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 938, 175–185.

    Article  CAS  Google Scholar 

  • Tesoriero, A. J., Spruill, T. B., & Eimers, J. L. (2004). Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: implications for aquifer susceptibility. Applied Geochemistry, 19, 1471–1482.

    Article  CAS  Google Scholar 

  • Tixier, C., Singer, H. P., Oellers, S., & Müller, S. R. (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental science & technology, 37, 1061–1068.

    Article  CAS  Google Scholar 

  • USDA. (2005). https://soilseries.sc.egov.usda.gov. Accessed 27 Mar 2018.

  • US EPA. (2002). Onsite wastewater treatment systems manual. Report #EPA/625/R-00/008. Washington, DC: Office of Water and Office of Research and Development.

  • Vulava, V. M., Cory, W. C., Murphey, V. L., & Ulmer, C. Z. (2016). Sorption, photodegradation, and chemical transformation of naproxen and ibuprofen in soils and water. The Science of the Total Environment, 565, 1063–1070.

    Article  CAS  Google Scholar 

  • Warren, N., Allan, I. J., Carter, J. E., House, W. A., & Parker, A. (2003). Pesticides and other micro-organic contaminants in freshwater sedimentary environments—a review. Applied Geochemistry, 18, 159–194.

    Article  CAS  Google Scholar 

  • Xu, J., Wu, L., & Chang, A. C. (2009). Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 77, 1299–1305.

    Article  CAS  Google Scholar 

  • Yalkowsky, S. H., & Dannenfelser, R. M. (1992). Aquasol database of aqueous solubility. Tucson: College of Pharmacy, University of Arizona.

    Google Scholar 

  • Yamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I., & Sekizawa, J. (2009). Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Research, 43, 351–362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

East Carolina University’s Division of Research, Economic Development, and Engagement is acknowledged for providing funding to BB as part of ECU’s East-West Collaborative Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Mitra.

Electronic Supplementary Material

ESM 1

(DOCX 3009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, S., Benfield, B. Ibuprofen Sorption to Coastal Plain Soils. Water Air Soil Pollut 229, 295 (2018). https://doi.org/10.1007/s11270-018-3900-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3900-4

Keywords

Navigation