Skip to main content
Log in

The Application of Biosurfactants in Bioremediation of the Aged Sediment Contaminated with Polychlorinated Biphenyls

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Currently, there is a considerable interest on application of bio-based surfactants as an alternative to conventional synthetic ones as well as in bioremediation technologies to decontaminate polluted sites more effectively. The work is focused on the study of the effects of two biosurfactants, non-ionic Saponin and anionic Rhamnolipids R-90 on the biodegradation of Delor 103, the industrial mixture of polychlorinated biphenyls (PCBs) by bioaugmented bacterial strains. The bacterial isolates used in this study were obtained from long-term PCB-contaminated sediments of the industrial waste Strážsky canal. Enhanced biodegradation of PCBs by Gram-negative strains Achromobacter xylosoxidans (93%) and Stenotrophomonas maltophilia (66%) was observed with the addition of (bio)surfactants Saponin, Rhamnolipids R-90, and Triton X-100 in defined liquid mineral media. The addition of biosurfactant Saponin and Rhamnolipids R-90 increased the PCB biodegradation (55 and 60%, respectively) in the bioaugmented PCB-contaminated sediment inoculated with bacterial strain A. xylosoxidans as well. Regarding to the inhibitory effect of used (bio)surfactants, the obtained IC50 values confirmed that the non-ionic phytogenic Saponin and synthetic surfactant Triton X-100 had a significantly lower toxicity toward bioluminescence of the standard bacteria Vibrio fischeri and used PCB-degrading bacterial strains than the anionic bacterial surfactant Rhamnolipids R-90.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyode, O., George, D., Getti, G., & Boateng, J. (2016). Systematic comparison of the functional physico-chemical characteristics and biocidal activity of microbial derived biosurfactants on blood-derived and breast cancer cells. Journal of Colloid and Interface Science, 479, 221–233.

    Article  CAS  Google Scholar 

  • Bezza, F. A., Beukes, M., & Nkhalambayausi Chirwa, E. M. (2015). Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. Process Biochemistry, 50, 1911–1922.

    Article  CAS  Google Scholar 

  • Bharali, P., Saikiab, J. P., Raya, A., & Konwarc, B. K. (2013). Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent. Colloids and Surfaces B: Biointerfaces, 103, 502–509.

    Article  CAS  Google Scholar 

  • Billingsley, K. A., Backus, S. M., & Ward, O. P. (1999). Effect of surfactant solubilization on biodegradation of polychlorinated biphenyl congeners by Pseudomonas LB400. Applied Microbiology and Biotechnology, 52, 255–260.

    Article  CAS  Google Scholar 

  • Blyth, W., Shahsavari, E., Morrison, P. D., & Ball, A. S. (2015). Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site. Journal of Environmental Management, 162, 30–36.

    Article  CAS  Google Scholar 

  • Borja, J., Taleon, D. M., Auresenia, J., & Gallardo, S. (2005). Polychlorinated biphenyls and their biodegradation. Process Biochemistry, 40, 1999–2013.

    Article  CAS  Google Scholar 

  • Brázová, T., Hanzelová, V., & Miklisová, D. (2012). Bioaccumulation of six PCB indicator congeners in a heavily polluted water reservoir in eastern Slovakia: tissue-specific distribution in fish and their parasites. Parasitology Research, 111, 779–786.

    Article  Google Scholar 

  • Danielovič, I., Hecl, J., & Danilovič, M. (2014). Soil contamination by PCBs on a regional scale: the case of Strážske, Slovakia. Polish Journal of Environmental Studies, 23, 1547–1554.

    Google Scholar 

  • Denyer, S. P., & Maillard, J. Y. (2002). Cellular impermeability and uptake of biocides and antibiotics in gram-negative bacteria. Journal of Applied Microbiology, 92, 35–45.

    Article  Google Scholar 

  • Dercová, K., Čičmanová, J., Lovecká, P., Demnerová, K., Macková, M., Hucko, P., & Kušnír, P. (2008). Isolation and identification of PCB-degrading microorganisms from contaminated sediments. International Biodeterioration and Biodegradation, 62, 219–225.

    Article  CAS  Google Scholar 

  • Dercová, K., Šeligová, J., Dudášová, H., Mikulášová, M., Šilhárová, K., Tóthová, L., & Hucko, P. (2009). Characterization of the bottom sediments contaminated with polychlorinated biphenyls: evaluation of ecotoxicity and biodegradability. International Biodeterioration and Biodegradation, 63, 440–449.

    Article  CAS  Google Scholar 

  • Dercová, K., Lászlová, K., Dudášová, H., Murínová, S., Balaščáková, M., & Škarba, J. (2015). The hierarchy of bioremediation technology choices: prospects of using the potential of bacterial degraders. Chemické Listy, 109, 281–290.

    Google Scholar 

  • Dudášová, H., Lukáčová, L., Murínová, S., Puškárová, A., Pangallo, D., & Dercová, K. (2014). Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. Journal of Basic Microbiology, 54, 253–260.

    Article  CAS  Google Scholar 

  • Dudášová, H., Lászlová, K., Lukáčová, L., Balaščáková, M., Murínová, S., & Dercová, K. (2016). Bioremediation of PCB-contaminated sediments and evaluation of pre- and post-treatment ecotoxicity. Chemical Papers, 70, 1049–1058.

    Article  Google Scholar 

  • Edwards, K. R., Lepo, J. E., & Lewis, M. A. (2003). Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Marine Pollution Bulletin, 46, 1309–1316.

    Article  CAS  Google Scholar 

  • Egorova, D. O., Demakov, V. A., & Plotnikova, E. G. (2013). Bioaugmentation of a PCB contaminated soil with two aerobic bacterial strains. Journal of Hazardous Materials, 261, 378–386.

    Article  CAS  Google Scholar 

  • Ehlers, L. J., & Luthy, R. G. (2003). Contaminant bioavailability in soil and sediment. Environmental Science and Technology, 37, 295A–302A.

    Article  CAS  Google Scholar 

  • Fava, F., & Di Gioia, D. (1998). Effects of triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil. Applied Microbiology and Biotechnology, 50, 623–630.

    Article  CAS  Google Scholar 

  • Fava, F., & Piccolo, A. (2001). Effects of humic substances on the bioavailabiolity and aerobic biodegradation of polychlorinated biphenyls in a model soil. Biotechnology and Bioengineering, 77, 204–2011.

    Article  CAS  Google Scholar 

  • Fava, F., & Picollo, A. (2002). Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil. Biotechnology and Bioengineering, 77(2), 204–211.

    Article  CAS  Google Scholar 

  • Franzetti, A., Di Gennaro, P., Bevilacqua, A., Papacchini, M., & Bestetti, G. (2006). Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere, 62, 1474–1480.

    Article  CAS  Google Scholar 

  • Furukawa, K., Suenaga, H., & Goto, M. (2004). Biphenyl dioxygenases: functional versatilities and directed evolution. Journal of Bacteriology, 186, 5189–5196.

    Article  CAS  Google Scholar 

  • Gomes, H. I., Dias-Ferreira, C., Ottosen, L. M., & Ribeiro, A. B. (2014). Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. Journal of Colloid and Interface Science, 433, 189–195.

    Article  CAS  Google Scholar 

  • Hiller, E., Zemanová, L., Sirotiak, M., & Jurkovič, Ľ. (2011). Concentrations, distributions, and sources of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in bed sediments of the water reservoirs in Slovakia. Environmental Monitoring and Assessment, 173, 883–897.

    Article  CAS  Google Scholar 

  • Jensen, J. (1999). Fate and effects of linear alkylbenzene sulphonates (LAS) in the terrestrial environment. Science of the Total Environment, 226, 93–111.

    Article  CAS  Google Scholar 

  • Kaczorek, E., Sałek, K., Guzik, U., Dudzińska-Bajorek, B., & Olszanowski, A. (2013). The impact of long-term contact of Achromobacter sp. 4(2010) with diesel oil—changes in biodegradation, surface properties and hexadecane monooxygenase activity. International Biodeterioration and Biodegradation, 78, 7–16.

    Article  CAS  Google Scholar 

  • Kaczorek, E., Smułek, W., Zdarta, A., Sawczuk, A., & Zgoła-Grześkowiak, A. (2016). Influence of saponins on the biodegradation of halogenated phenols. Ecotoxicology and Environmental Safety, 131, 127–134.

    Article  CAS  Google Scholar 

  • Kobayashi, T., Kaminaga, H., Navarro, R. R., & Iimura, Y. (2012). Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 47, 1138–1145.

    Article  CAS  Google Scholar 

  • Langer, P., Kočan, A., Tajtáková, M., Drobná, B., Chovancová, J., Rádiková, Z., et al. (2012). Environmental contamination with endocrine and metabolic disruptors and their impact on health of Slovakian resident. Monitor Medicíny SLS, 3–4, 5–12.

    Google Scholar 

  • Lászlová, K., Dercová, K., Horváthová, H., Murínová, S., Škarba, J., & Dudášová, H. (2016). Assisted bioremediation approaches—biostimulation and bioaugmentation—used in the removal of organochlorinated pollutants from the contaminated bottom sediments. International Journal of Environmental Research, 10, 367–378.

    Google Scholar 

  • Li, Y., Liang, F., Zhu, Y., & Wang, F. (2013). Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. Journal of Soils and Sediments, 13, 925–931.

    Article  CAS  Google Scholar 

  • Lima, T. M. S., Procópio, L. C., Brandão, F. D., Leão, B. A., Tótola, M. R., & Borges, A. C. (2011). Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresource Technology, 102, 2957–2964.

    Article  CAS  Google Scholar 

  • Liu, S., Guo, C., Liang, X., Wu, F., & Dang, Z. (2016). Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicology and Environmental Safety, 129, 210–218.

    Article  CAS  Google Scholar 

  • Makkar, R. S., & Rockne, K. J. (2003). Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environmental Toxicology & Chemistry, 22, 2280–2292.

    Article  CAS  Google Scholar 

  • Maron, D. M., & Ames, B. J. (1983). Revised methods for Salmonella mutagenicity test. Mutation Research, 113, 173–215.

    Article  CAS  Google Scholar 

  • Martinéz, P., Agullo, L., Hernandez, M., & Seeger, M. (2007). Chlorobenzoate inhibits growth and induces stress proteins in the PCB-degrading bacterium Burkholderia xenovorans LB400. Microbiology, 188, 289–297.

    Google Scholar 

  • Mills, S. A., Thal, D. I., & Barney, J. (2007). A summary of the 209 PCB congener nomenclature. Chemosphere, 68, 1603–1612.

    Article  CAS  Google Scholar 

  • Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research, 455, 29–60.

    Article  CAS  Google Scholar 

  • Mudgil, P. (2011). Biosurfactants for soil biology. In A. Singh, N. Parmar, & R. Kuhad (Eds.), Bioaugmentation, biostimulation, and biocontrol (pp. 203–206). Berlin: Springer.

    Chapter  Google Scholar 

  • Murínová, S., Dercová, K., & Dudášová, H. (2014). Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. International Biodeterioration & Biodegradation, 91, 52–59.

    Article  CAS  Google Scholar 

  • Ngigi, A., Dörfler, U., Scherb, H., Getenga, Z., Boga, H., & Schroll, R. (2011). Effect of fluctuating soil humidity on in situ bioavailability and degradation of atrazine. Chemosphere, 84, 369–375.

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak, M., Płaza, A. G., Piotrowska-Seget, Z., & Cameotra, S. (2011). Environmental applications of biosurfactants: recent advances. International Journal of Molecular Sciences, 12, 633–654.

    Article  CAS  Google Scholar 

  • Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 67, 170–191.

    Article  CAS  Google Scholar 

  • Pieper, H. D., & Seeger, M. (2008). Bacterial metabolism of polychlorinated biphenyls. Journal of Molecular Microbiology and Biotechnology, 15, 121–138.

    Article  CAS  Google Scholar 

  • Pijanowska, A., Kaczorek, E., Chrzanowski, Ł., & Olszanowski, A. (2007). Cell hydrophobicity of Pseudomonas spp. and Bacillus spp. bacteria and hydrocarbon biodegradation in the presence of Quillaya saponin. World Journal of Microbiology and Biotechnology, 23, 677–682.

    Article  CAS  Google Scholar 

  • Robinson, K. G., Ghosh, M. M., & Shi, Z. (1996). Mineralization enhancement of nonaqueous phase and soil bound PCB using biosurfactant. Water Science and Technology, 34, 303–309.

    Article  CAS  Google Scholar 

  • Schippers, C., Gessner, K., Mueller, T., & Scheper, T. (2000). Microbial degradation of phenanthrene by addition of a sophorolipid mixture. Journal of Biotechnology, 83, 189–198.

    Article  CAS  Google Scholar 

  • Seeger, M., Hernández, M., Méndez, V., Ponce, B., Córdova, M., & González, M. (2010). Bacterial degradation and bioremediation of chlorinated herbicides and biphenyls. Journal of Soil Science and Plant Nutrition, 10, 320–332.

    Article  Google Scholar 

  • Singer, A. C., Gilbert, E. S., Luepromchai, E., & Crowley, D. E. (2000). Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Applied Microbiology and Biotechnology, 54, 838–843.

    Article  CAS  Google Scholar 

  • Singh, A. K., & Cameotra, S. S. (2014). Influence of microbial and synthetic surfactant on the biodegradation of atrazine. Environmental Science and Pollution Research, 21, 2088–2097.

    Article  CAS  Google Scholar 

  • Slovak Office of Standards, Metrology and Testing (2006). Slovak standard: Water quality. Sampling. Part 12: Guidance on the design of sampling programmes and sampling techniques (757051). STN ISO 5667-12:2006. Bratislava, Slovakia.

  • Slovak Office of Standards, Metrology and Testing (2007). Slovak standard: Water quality. Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test). Part 2: Method using liquid-dried bacteria 757445-2007. STN ISO 11348-2:2007. Bratislava, Slovakia.

  • Slovak Office of Standards, Metrology and Testing (2008). Slovak standard: Water quality (2008). Determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor)—Duckweed growth inhibition test. (757747). STN ISO 20079. Bratislava, Slovakia.

  • Soberón-Chávez, G., Lépine, F., & Déziel, E. (2005). Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 68(6), 718–725.

    Article  CAS  Google Scholar 

  • Sotirova, A. V., Spasova, D. I., Galabova, D. N., Karpenko, E., & Shulga, A. (2008). Rhamnolipid–biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Current Microbiology, 56, 639–644.

    Article  CAS  Google Scholar 

  • Sparg, S. G., Light, M. E., & van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219–243.

    Article  CAS  Google Scholar 

  • Sütterlin, H., Alexy, R., & Kümmerer, K. (2008). The toxicity of the quaternary ammonium compound benzalkonium chloride alone and in mixtures with other anionic compounds to bacteria in test systems with Vibrio fischeri and Pseudomonas putida. Ecotoxicology and Environmental Safety, 71, 498–505.

    Article  CAS  Google Scholar 

  • Taniyasu, S., Kannan, K., Holoubek, I., Ansorgova, A., Horii, Y., Hanari, N., et al. (2003). Isomer-specific analysis of chlorinated biphenyls, naphthalenes and dibenzofurans in Delor: polychlorinated biphenyl preparations from the former Czechoslovakia. Environmental Pollution, 126, 169–178.

    Article  CAS  Google Scholar 

  • Tian, W., Yao, J., Liu, R., Zhu, M., Wang, F., Wu, X., et al. (2016). Effect of natural and synthetic surfactants on crude oil biodegradation by indigenous strains. Ecotoxicology and Environmental Safety, 129, 171–179.

    Article  CAS  Google Scholar 

  • Vasilyeva, G. K., Strijakova, E. R., Nikolaeva, S. N., Lebedev, A. T., & Shea, P. J. (2010). Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environmental Pollution, 158, 770–777.

    Article  CAS  Google Scholar 

  • Viisimaa, M., Karpenko, O., Novikov, V., Trapido, M., & Goi, A. (2013). Influence of biosurfactant on combined chemical-biological treatment of PCB-contaminated soil. Chemical Engineering Journal, 220, 352–359.

    Article  CAS  Google Scholar 

  • Viney, I., & Bewley, R. J. F. (1990). Preliminary studies on the development of a microbiological treatment for polychlorinated biphenyls. Archives of Environmental Contamination and Toxicology, 19, 789–796.

    Article  CAS  Google Scholar 

  • Volkering, F., Breure, A. M., Andel, J., & Rulkens, W. H. (1995). Influence of non-ionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 61, 1699–1705.

    CAS  Google Scholar 

  • Volkering, F., Breure, A. M., & Rulkens, W. H. (1998). Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 8, 401–417.

    Article  CAS  Google Scholar 

  • Vrana, B., Dercová, K., Baláž, Š., & Ševčíková, A. (1996). Effect of chlorobenzoates on the degradation of polychlorinated biphenyls (PCB) by Pseudomonas stutzeri. World Journal of Microbiology and Biotechnology, 12, 323–326.

    Article  CAS  Google Scholar 

  • Wang, L., Li, F., Zhan, Y., & Zhu, L. (2016). Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environmental Science and Pollution Research, 23, 14451–14461.

    Article  CAS  Google Scholar 

  • Wang, X., Sun, L., Wang, L., Wu, H., Chen, S., & Zheng, X. (2017). Surfactant-enhanced bioremediation of DDTs and PAHs in contaminated farmland soil. Environmental Technology, 9, 1–12.

    Google Scholar 

  • Zhang, D., & Zhu, L. Z. (2012). Controlling technology of interfacial behaviors of organic pollutants and its application. Frontiers of Environmental Science & Engineering, 8, 305–315.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Scientific Grant Agency (project No. 1/0295/15) and from the Slovak Research and Development Agency (project No. APVV-0656-12) of the Ministry of Education, Research and Sport of the Slovak Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Lászlová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lászlová, K., Dudášová, H., Olejníková, P. et al. The Application of Biosurfactants in Bioremediation of the Aged Sediment Contaminated with Polychlorinated Biphenyls. Water Air Soil Pollut 229, 219 (2018). https://doi.org/10.1007/s11270-018-3872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3872-4

Keywords

Navigation