Skip to main content

Applying Chemometrics to Determine Dispersion of Mine Tailing-Affected Sediments from Submarine Tailing Disposal in Bøkfjorden, Northern Norway

Abstract

Mine tailing management is one of the largest environmental issues related to mining operation. This study uses chemometrics to assess the dispersion of iron mine tailing-affected sediments in Bøkfjorden, Northern Norway. Metal concentrations (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) and physico-chemical sediment characteristics (conductivity, organic matter, sulphate, chloride, grain size, CaCO3, pH) were analysed in seven sediment cores collected in a transect out of the fjord along with two reference cores. Results of hierarchical cluster analysis and principal component analysis allowed to distinguish between mine tailing-affected and non-affected sediments. Non-affected sediments were especially characterised by high levels of organic matter whilst mine tailing-affected sediments varied significantly in sediment characteristics depending on location in the fjord. Crucial parameters to reveal mine tailing-affected sediments varied between the target metal Fe along with metals of Cd and Mn, albeit less significant. Variations in mine tailing-affected sediment characteristics could be attributed to other anthropogenic activities in the fjord. Despite potential disturbances, chemometrics made it possible to identify dispersion of mine tailing-affected sediments to cover the inner and middle parts of the fjord. The study demonstrates the advantage of applying chemometrics on complex fjord systems, which in this case was used to distinguish mine tailing-affected sediments from areas with elevated levels of metals not necessarily related to the mine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Berge, J. A., Beylich, B., Brooks, S., Jaccard, P. F., Tobiesen, A., & Øxnevad, S. (2012). Overvåking Av Bøkfjorden 2011 Og Giftighetstesting Av Gruvekjemikaliene Magnafloc LT 38 Og Magnafloc 10. NIVA-report, 6310—2012.

  2. Berge, J., Schwermer, C., Tobiesen, A., & Vogelsang, C. (2014). Gruveavgang I Bøkfjorden—Utlekking Og Giftighetstesting Av Vannbehandlingskjemikalier. NIVA-report, 6693—2014.

  3. Boyd, R., Bjerkgård, T., Ihlen, P. M., Korneliussen, A., Sandstad, J. S., & Schiellerup, H. (2012). Geology for society. NGU-report, 2012.048.

  4. Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy-metals in sediments with special reference to United-Kingdom estuaries—a review. Environmental Pollution, 76(2), 89–131.

    Article  CAS  Google Scholar 

  5. Burd, B. (2002). Evaluation of mine tailings effects on a benthic marine infaunal community over 29 years. Marine Environmental Research, 53(5), 481–519.

    Article  CAS  Google Scholar 

  6. Cooke, J., & Johnson, M. (2002). Ecological restoration of land with particular reference to the mining of metals and industrial minerals: a review of theory and practice. Environmental Reviews, 10(1), 41–71.

    Article  CAS  Google Scholar 

  7. Danielsson, Ê., Cato, I., Carman, R., & Rahm, L. (1999). Spatial clustering of metals in the sediments of the Skagerrak/Kattegat. Applied Geochemistry, 14(6), 689–706.

    Article  CAS  Google Scholar 

  8. Dold, B. (2014a). Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals, 4, 621–641.

    Article  CAS  Google Scholar 

  9. Dold, B. (2014b). Submarine tailings disposal (STD)—a review. Minerals, 4(3), 642–666.

    Article  CAS  Google Scholar 

  10. Dudka, S., & Adriano, D. (1997). Environmental impacts of metal ore mining and processing: a review. Journal of Environmental Quality, 26(3), 590–602.

    Article  CAS  Google Scholar 

  11. Edraki, M., Baumgartl, T., Manlapig, E., Bradshaw, D., Franks, D. M., & Moran, C. J. (2014). Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches. Journal of Cleaner Production, 84(1), 411–420.

    Article  Google Scholar 

  12. Eggleton, J., & Thomas, K. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30(7), 973–980.

    Article  CAS  Google Scholar 

  13. Elberling, B., Asmund, G., Kunzendorf, H., & Krogstad, E. (2002). Geochemical trends in metal-contaminated fiord sediments near a former lead-zinc mine in West Greenland. Applied Geochemistry, 17(4), 493–502.

    Article  CAS  Google Scholar 

  14. Ellis, D., & Ellis, K. (1994). Very deep STD. Marine Pollution Bulletin, 28(8), 472–476.

    Article  CAS  Google Scholar 

  15. Eriksson, L., Trygg, J., & Wold, S. (2014). A chemometrics toolbox based on projections and latent variables. Journal of Chemometrics, 28(5), 332–346.

    Article  CAS  Google Scholar 

  16. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324.

    Article  CAS  Google Scholar 

  17. Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2004). Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Science of the Total Environment, 330(1–3), 115–129.

    Article  CAS  Google Scholar 

  18. Guillén, M. T., Delgado, J., Albanese, S., Nieto, J. M., Lima, A., & De Vivo, B. (2012). Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva township (SW Iberian peninsula). Journal of Geochemical Exploration, 119–120, 32–43.

    Article  CAS  Google Scholar 

  19. IMO. (1972). Convention on the prevention of marine pollution by dumping of wastes and other matter. IMO website, 1–16. Retrieved http://www.imo.org/blast/blastDataHelper.asp?data_id=21278&filename=LC-LPbrochure.pdf.

  20. Jamieson, H. E., Walker, S. R., & Parsons, M. B. (2015). Mineralogical characterization of mine waste. Applied Geochemistry, 57, 85–105.

    Article  CAS  Google Scholar 

  21. Josefson, A., Hansen, J., Asmund, G., & Johansen, P. (2008). Threshold response of benthic macrofauna integrity to metal contamination in West Greenland. Marine Pollution Bulletin, 56(7), 1265–1274.

    Article  CAS  Google Scholar 

  22. Klima- og Forurensningsdirektoratet. (2010). Bergverk Og Avgangsdeponering: Status, Miljøutfordringer Og Kunnskapsbehov. TA-2715.

  23. Kutti, T., Bannister, R. J., Fosså, J. H., Krogness, C. M., Tjensvoll, I., & Søvik, G. (2015). Metabolic responses of the deep-water sponge Geodia barretti to suspended bottom sediment, simulated mine tailings and drill cuttings. Journal of Experimental Marine Biology and Ecology, 473, 64–72.

    Article  CAS  Google Scholar 

  24. Kvassness, A., & Iversen, E. (2013). Waste sites from mines in Norwegian fjords. Mineralproduksjon, 3, 27–38.

    Google Scholar 

  25. Larsen, T. S., Kristensen, J. A., Asmund, G., & Bjerregaard, P. (2001). Lead and zinc in sediments and biota from Maarmorilik, West Greenland: an assessment of the environmental impact of mining wastes on an Arctic fjord system. Environmental Pollution, 114(2), 275–283.

    Article  CAS  Google Scholar 

  26. Loska, K., & Wiechuła, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik reservoir. Chemosphere, 51(8), 723–733.

    Article  CAS  Google Scholar 

  27. Lottermoser, B. G. (2007). Mine wastes—characterization, treatments and environmental impacts. Berlin: Springer.

    Google Scholar 

  28. Norconsult. (2010). Kirkenes Industrial Logistics Area (KILA)—Miljøundersøgelser. Norconsult-report, 5012450.

  29. Norwegian Pollution Control Authorities. (2007). Revidering av klassifisering av metaller og organiske miljøgifter i vann og sedimenter. TA-2229.

  30. Odhiambo, B. K., Macdonald, R. W., O’Brien, M. C., Harper, J. R., & Yunker, M. B. (1996). Transport and fate of mine tailings in a coastal fjord of British Columbia as inferred from the sediment record. Science of the Total Environment, 191(1–2), 77–94.

    Article  CAS  Google Scholar 

  31. OSPAR Commission. (2007). Convention for the protection of the marine environment of the North-East Atlantic. Retrieved http://www.ospar.org/convention.

  32. OSPAR Commission. (2009). Background document on CEMP assessment criteria for the QSR 2010. Monitoring and assessment series. OSPAR.

  33. Pedersen, K. B., Lejon, T., Jensen, P. E., & Ottosen, L. M. (2015). Chemometric analysis for pollution source assessment of harbour sediments in Arctic locations. Water, Air, and Soil Pollution, 226, 150.

    Article  CAS  Google Scholar 

  34. Pedersen, K. B., Lejon, T., Jensen, P. E., & Ottosen, L. M. (2016). Applying multivariate analysis as decision tool for evaluating sediment-specific remediation strategies. Chemosphere, 151, 59–67.

    Article  CAS  Google Scholar 

  35. Pedersen, K. B., Jensen, P. E., Ottosen, L. M., Sternal, B., & Junttila, J. (2017). Long term dispersion and availability of metals from submarine mine tailings disposal in a fjord in Arctic Norway. Environmental Science and Pollution Research, 1–12.

  36. R Core Team. (2018). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  37. Ramirez-Llodra, E., Trannum, H. C., Evenset, A., Levin, L. A., Andersson, M., Finne, T. E., Hilario, A., Flem, B., Christensen, G., Schaanning, M., & Vanreusel, A. (2015). Submarine and deep-sea mine tailing placements: a review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally. Marine Pollution Bulletin, 97(1–2), 13–35.

    Article  CAS  Google Scholar 

  38. Riget, F., Johansen, P., & Asmund, G. (1997). Uptake and release of lead and zinc by blue mussels. Experience from transplantation experiments in Greenland. Marine Pollution Bulletin, 34(10), 805–815.

    Article  CAS  Google Scholar 

  39. Sima, M., Dold, B., Frei, L., Senila, M., Balteanu, D., & Zobrist, J. (2011). Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the golden quadrangle of the Apuseni Mountains, Romania. Journal of Hazardous Materials, 189(3), 624–639.

    Article  CAS  Google Scholar 

  40. Skaare, B., Oug, E., & Nilsson, H. (2007). Miljøundersøkelser I Fjordsystemet Utenfor Kirkenes I Finnmark 2007. Niva-report, 5473—2007.

  41. Skei, J., & Rygg, B. (1989). Miljøundersøkelser I Fjordsystemet Utenfor Kirkenes I Finnmark. Niva-report, O-87170.

  42. Skei, J., Rygg, B., & Sørensen, K. (1995). Miljøundersøkelser I Fjordsystemet Utenfor Kirkenes I Finnmark. Niva-report, O-94071.

  43. Søndergaard, J., Asmund, G., Johansen, P., & Rigét, F. (2011). Long-term response of an Arctic fiord system to lead-zinc mining and submarine disposal of mine waste (Maarmorilik, West Greenland). Marine Environmental Research, 71(5), 331–341.

    Article  CAS  Google Scholar 

  44. Sprovieri, M., Feo, M. L., Prevedello, L., Manta, D. S., Sammartino, S., Tamburrino, S., & Marsella, E. (2007). Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy). Chemosphere, 67, 998–1009.

    Article  CAS  Google Scholar 

  45. Sternal, B., Juntilla, J., Skirbekk, K., Forwick, M., Carroll, J., & Pedersen, K. B. (2017). The impact of submarine copper mine tailing disposal from the 1970s on Repparfjorden, Northern Norway. Marine Pollution Bulletin, 120(1–2), 136–153.

    Article  CAS  Google Scholar 

  46. Vogt, C. (2013). International assessment of marine and riverine disposal of mine tailings. Final report adopted by the International Maritime Organization. London Convention/Protocol, IMO.

  47. Wilson, B., Lang, B., & Pyatt, F. B. (2005). The dispersion of heavy metals in the vicinity of Britannia Mine, British Columbia, Canada. Ecotoxicology and Environmental Safety, 60(3), 269–276.

Download references

Acknowledgements

The authors would like to thank the captain and crew of R/V Helmer Hanssen as well as the scientific participants for help with coring and core sampling, especially Kari Skirbekk and Noortje Dijkstra from UiT. Malene Grønvold and Ebba Schnell are acknowledged for their assistance in the laboratory of Arctic Technology Centre, DTU.

Funding

The Northern Environmental Waste Management (EWMA) project, funded by the Research Council of Norway through NORDSATSNING (grant number 195160) and EniNorgeAS, is gratefully acknowledged for funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kristine B. Pedersen.

Electronic supplementary material

ESM 1

(CSV 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonsen, A.M.T., Pedersen, K.B., Bach, L. et al. Applying Chemometrics to Determine Dispersion of Mine Tailing-Affected Sediments from Submarine Tailing Disposal in Bøkfjorden, Northern Norway. Water Air Soil Pollut 229, 206 (2018). https://doi.org/10.1007/s11270-018-3868-0

Download citation

Keywords

  • Submarine mine tailing disposal
  • Metal dispersion
  • Principal component analysis
  • Hierarchical cluster analysis
  • Fjord sediments