Neural Modeling of Greenhouse Gas Emission from Agricultural Sector in European Union Member Countries

Article
  • 24 Downloads

Abstract

The present paper discusses a novel methodology based on neural network to determine agriculture emission model simulations. Methane and nitrous oxide are the key pollutions among greenhouse gases being a major contribution to climate changes because of their high potential global impact. Using statistical clustering (k-means and Ward’s method), five meaningful clusters of countries with similar level of greenhouse gases emission were identified. Neural modeling using multi-layer perceptron networks was performed for countries placed in particular groups. The parameters that characterize the quality of a network are the predictive errors (mainly validation and test) and they are high (0.97–0.99). The use of sensitivity analysis allowed for identifying the variables that have a significant influence on the greenhouse gases emissions. The sensitivity analysis of the designed artificial neural network models shows a few dominant variables, affecting emissions with varied intensity: cattle and buffaloes, sheep and goat populations, afforestation as well as electricity consumption. The observed values were compared with those predicted by the models. The forecasted course of changes in the variable test is identical with the real data, which proves that the model highly matches to the observed data.

Keywords

Greenhouse gases Agriculture emission Neural modeling Multi-layer perceptron Clustering method UE 

References

  1. Azid, A., Juahir, H., Toriman, M. E., et al. (2014). Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia. Water, Air, and Soil Pollution, 225, 2063.  https://doi.org/10.1007/s11270-014-2063-1.CrossRefGoogle Scholar
  2. Bolanča, T., Strahovnik, T., Ukić, Š., Novak Stankov, M., & Rogošić, M. (2017). Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study—Croatia (EU). Environmental Science and Pollution Research, 24, 16172–16185.  https://doi.org/10.1007/s11356-017-9216-x.CrossRefGoogle Scholar
  3. Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation, 19, 577–593.CrossRefGoogle Scholar
  4. Calvin, K. V., Beach, R., Gurgel, A., Labriet, M., & Loboguerrero Rodriguez, A. M. (2016). Agriculture, forestry, and other land-use emissions in Latin America. Energy Economics, 56, 615–624.  https://doi.org/10.1016/j.eneco.2015.03.020.CrossRefGoogle Scholar
  5. Carteron, A., Jeanmougin, M., Leprieur, F., & Spatharis, S. (2012). Assessing the efficiency of clustering algorithms and goodness-of-fit measures using phytoplankton field data. Ecological Informatics, 9, 64–68.  https://doi.org/10.1016/j.ecoinf.2012.03.00.CrossRefGoogle Scholar
  6. Chen, D., Li, Y., Grace, P., & Mosier, A. R. (2008). N2O emissions from agricultural lands: a synthesis of simulation approaches. Plant and Soil, 309(1–2), 169–189.  https://doi.org/10.1007/s11104-008-9634-0.CrossRefGoogle Scholar
  7. De Cara, S., Houzé, M., & Jayet, P. A. (2005). Methane and nitrous oxide emissions from agriculture in the EU: a spatial assessment of sources and abatement costs. Environmental and Resource Economics, 32, 551–583.  https://doi.org/10.1007/s10640-005-0071-8.CrossRefGoogle Scholar
  8. De Pinto, A., Li, M., Haruna, A., et al. (2016). Low emission development strategies in agriculture. An Agriculture, Forestry, and Other Land Uses (AFOLU) perspective. World Development, 87, 180–203.  https://doi.org/10.1016/j.worlddev.2016.06.013.CrossRefGoogle Scholar
  9. Fang, D., Zhang, X., Yu, Q., Jin, T., & Tian, L. (2018). A novel method for carbon dioxide emission forecasting based on improved Gaussian processes regression. Journal of Cleaner Production, 173, 143–150.  https://doi.org/10.1016/j.jclepro.2017.05.102.CrossRefGoogle Scholar
  10. Foley, J. A., Ramankutty, N., Brauman, K. A., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.  https://doi.org/10.1038/nature10452.CrossRefGoogle Scholar
  11. Food and Agriculture Organization. (2006). Livestock’s long shadow—environmental issues and options. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  12. Food and Agricultural Organization. http://faostat3.fao.org/home/E.
  13. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock—a global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  14. Hasegawa, T., & Matsuoka, Y. (2015). Climate change mitigation strategies in agriculture and land use in Indonesia. Mitigation and Adaptation Strategies for Global Change, 20, 409–424.  https://doi.org/10.1007/s11027-013-9498-3.CrossRefGoogle Scholar
  15. He, J., Yu, Y., Xie, Y. Wu L., Liu N., Zhao S. (2016) Numerical model-based artificial neural network model and its application for quantifying impact factors of urban air quality. Water, Air, and Soil Pollution, 227–235.  https://doi.org/10.1007/s11270-016-2930-z.
  16. International Fertilizer Industry Association. http://www.fertilizer.org/
  17. Intergovernmental Panel on Climate Change (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry M, Canziani O, Palutikof J, Van der Linden P, Hanson C (Eds.) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press.Google Scholar
  18. Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., & Movahedi, M. (2013). Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52, 333–338.  https://doi.org/10.1016/j.energy.2013.01.028.CrossRefGoogle Scholar
  19. Kolasa-Więcek, A. (2013). The use of artificial neural networks in predicting direct N2O emissions from agricultural soils. Ecological Chemistry and Engineering S, 20(2), 419–428.  https://doi.org/10.2478/eces-2013-0030.Google Scholar
  20. Krejić, N., Lužanin, Z., & Stojkovska, I. (2009). Gauss–Newton-based BFGS method with filter for unconstrained minimization. Applied Mathematics and Computation, 211(2), 354–362.  https://doi.org/10.1016/j.amc.2009.01.041.CrossRefGoogle Scholar
  21. Li, T., Baležentis, T., Makutėnienė, D., Streimikiene, D., & Kriščiukaitienė, I. (2016). Energy-related CO2 emission in European Union agriculture: driving forces and possibilities for reduction. Applied Energy, 180, 682–694.  https://doi.org/10.1016/j.apenergy.2016.08.031.CrossRefGoogle Scholar
  22. Lubowski, R. N., & Rose, S. K. (2013). The potential for REDD+: key economic modeling insights and issues. Review of Environment Economics and Policy, 7(1), 67–90.  https://doi.org/10.1093/reep/res024.CrossRefGoogle Scholar
  23. Nabavi-Pelesaraei, A., S Rafiee, S., Hosseinzadeh-Bandbafha, H., & Shamshirband, S. (2016). Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks. Journal of Cleaner Production, 133, 924–931.  https://doi.org/10.1016/j.jclepro.2016.05.188.CrossRefGoogle Scholar
  24. Najah, A., Elshafie, A., Karim, O. A., & Jaffar, O. (2009). Prediction of Johor River water quality parameters using artificial neural networks. European Journal of Scientific Research, 28(3), 422–435.Google Scholar
  25. Noiva, K., Fernández, J. E., & Wescoat, J. L. (2016). Cluster analysis of urban water supply and demand: toward large-scale comparative sustainability planning. Sustain Cities Soc, 27, 484–496.  https://doi.org/10.1016/j.scs.2016.06.003.CrossRefGoogle Scholar
  26. Olsen, O. (2010) A regional picture of farming in Europe—what, where and how much? Agriculture and fisheries, Statistics in focus. Eurostat 44.Google Scholar
  27. Raheli, B., Taghi Aalami, M., El-Shafie, A., Ali Ghorbani, M., & Deo, R. C. (2017). Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: A case study of Langat River. Environment and Earth Science, 76, 503.  https://doi.org/10.1007/s12665-017-6842-z.CrossRefGoogle Scholar
  28. Reetz Jr., H. F. (2016). Fertilizers and their efficient use. Paris: IFA.Google Scholar
  29. Salomon, E., & Rodhe, L. (2011). Losses of N2O, CH4 and NH3 from a grass sward used for overwintering beef heifers. Animal Feed Science and Technology, 166–167, 147–154.  https://doi.org/10.1016/j.anifeedsci.2011.04.008.CrossRefGoogle Scholar
  30. Santhanam, T., & Padmavathi, M. S. (2015). Application of K-means and genetic algorithms for dimension reduction by integrating SVM for diabetes diagnosis. Procedia Comput Sci, 47, 76–83.  https://doi.org/10.1016/j.procs.2015.03.185.CrossRefGoogle Scholar
  31. Snyder, C. S., Davidson, E. A., Smith, P., & Venterea, R. T. (2014). Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions. Current Opinion in Envronment Sustainability, 9–10, 46–54.  https://doi.org/10.1016/j.cosust.2014.07.005.CrossRefGoogle Scholar
  32. Solazzo, R., Donati, M., Tomasi, L., & Arfini, F. (2016). How effective is greening policy in reducing GHG emissions from agriculture? Evidence from Italy. The Science of Total Environment, 573(15), 1115–1124.  https://doi.org/10.1016/j.scitotenv.2016.08.066.CrossRefGoogle Scholar
  33. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & De Haan, C. (2006). Livestock’s long shadow: environmental issues and options. Rome: Food and Agriculture Organisation of the United Nations.Google Scholar
  34. Steinfeld, H., Mooney, H.A., Schneider, F. (2010) Livestock in a Changing Landscape. Vol 1: Drivers, Consequences and Responses. Island Press.Google Scholar
  35. Stringer, L. (2008). Can the UN convention to combat desertification guide sustainable use of the world’s soils? Frontiers in Ecology and the Environment, 6, 138–144.  https://doi.org/10.1890/070060.CrossRefGoogle Scholar
  36. Sutton, M., Oenema, O., Erisman, J. W., Leip, A., van Grinsven, H., & Winiwarter, W. (2011). Too much of a good thing. Nature, 472, 159–161.  https://doi.org/10.1038/472159a.CrossRefGoogle Scholar
  37. United States Environmental Protection Agency. (2005). Greenhouse gas mitigation potential in U.S. forestry and agriculture. Washington: Office of Atmospheric Programs.Google Scholar
  38. Van Kernebeek, H. R. J., Oosting, S. J., Van Ittersum, M. K., Bikker, P., & De Boer, I. J. M. (2016). Saving land to feed a growing population: Consequences for consumption of crop and livestock products. International Journal of Life Cycle Assessment, 21, 677–687.  https://doi.org/10.1007/s11367-015-0923-6.CrossRefGoogle Scholar
  39. Varin, T., Bureau, R., Mueller, C., & Willett, P. (2009). Clustering files of chemical structures using the Székely–Rizzo generalization of Ward’s method. Journal of Molecular Graphics Modeling, 28(2), 187–195.  https://doi.org/10.1016/j.jmgm.2009.06.006.CrossRefGoogle Scholar
  40. Velmurugan, T. (2012). Efficiency of K-means and K-medoids algorithms for clustering arbitrary data points. International Journal of Computer Technology and Applications, 3(5), 1758–1764.Google Scholar
  41. Vlontzos, G., & Pardalos, P. M. (2017). Assess and prognosticate greenhouse gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks. Renewable and Sustainable Energy Reviews, 76, 155–162.  https://doi.org/10.1016/j.rser.2017.03.054.CrossRefGoogle Scholar
  42. Wang, Y. Y., Hu, C. S., Ming, H., et al. (2013). Concentration profiles of CH4, CO2 and N2O in soils of a wheat–maize rotation ecosystem in North China Plain, measured weekly over a whole year. Agriculture, Ecosystems and Environment, 164, 260–272.  https://doi.org/10.1016/j.agee.2.CrossRefGoogle Scholar
  43. Weiss, F., & Leip, A. (2012). Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agriculture, Ecosystems and Environment, 149, 124–134.  https://doi.org/10.1016/j.agee.2011.12.015.CrossRefGoogle Scholar
  44. Zhu, B., Kros, J., Lesschen, J. P., Staritsky, I. G., & de Vries, W. (2016). Assessment of uncertainties in greenhouse gas emission profiles of livestock sectors in Africa, Latin America and Europe. Regional Environmental Change, 16, 1571–1582.  https://doi.org/10.1007/s10113-015-0896-9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Natural Sciences and Technology, Department of Process EngineeringUniversity of OpoleOpolePoland

Personalised recommendations