Skip to main content
Log in

Removal of Phosphate Using Ettringite Synthesized from Industrial By-products

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Removal of phosphate using ettringite synthesized from industrial by-products was evaluated in this study. Ettringite was synthesized by combining basic oxygen furnace (BOF) slag, alum, and flue-gas-desulfurization (FGD) gypsum at molar ratio ([Ca]:[Al]:[SO4]) of 3:2:3, pH 11.74, and 28 °C for 24 h. Kinetic study showed that the adsorption of phosphate by ettringite reached equilibrium after 24 h and could be represented by pseudo-second-order kinetic model. Equilibrium adsorption study revealed that pH was the most important factor, and removal efficiency increased with increasing pH. The mode of phosphate removal could be divided into two regions. At lower initial phosphate concentration (< 300 mg/L), experimental results fitted well with both Langmuir and Freundlich isotherm models. However, the adsorption density increased linearly with increasing phosphate concentration when at higher initial phosphate concentration (> 300 mg/L), implying that phosphate was mainly removed by surface precipitation. Judging from X-ray diffraction (XRD) analysis and PHREEQC simulation, the main calcium phosphate precipitate is hydroxyapatite (HAP). This study demonstrated that it is feasible to synthesize highly effective adsorption material using industrial by-products for phosphate removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez-Ayuso, E., & Nugteren, H. W. (2005). Synthesis of ettringite: a way to deal with the acid wastewaters of aluminium anodising industry. Water Research, 39, 65–72.

    Article  CAS  Google Scholar 

  • Barca, C., Gerente, C., Meyer, D., Chazarenc, F., & Andrer, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Research, 46, 2376–2384.

    Article  CAS  Google Scholar 

  • Baur, I., & Johnson, C. A. C.A.(2003). The solubility of selenate-Aft (3CaO·Al2O3·3CaSeO4·37.5H2O) and selenate-AFm (3CaO·Al2O3·CaSeO4·xH2O). Cement and Concrete Research, 33(2003), 1741–1748.

    Article  CAS  Google Scholar 

  • Benyoucef, S., & Amrani, M. (2011). Adsorption of phosphate ions onto low cost Aleppo pine adsorbent. Desalination, 275, 231–236.

    Article  CAS  Google Scholar 

  • Blanco, I., Molle, P., Saenz de Miera, L. E., & Ansola, G. (2016). Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands. Water Research, 89, 355–365.

    Article  CAS  Google Scholar 

  • Chang, E. E., Chiu, A. C., Pan, S. Y., Chen, Y. H., Tan, C. S., & Chiang, P. C. (2013). Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor. International Journal of Greenhouse Gas Control, 12, 382–389.

    Article  CAS  Google Scholar 

  • Chen, H., Wang, D., Li, X., Yang, Q., Luo, K., & Zeng, G. (2013). Biological phosphorus removal from real wastewater in a sequencing batch reactor operated as aerobic/extended-idle regime. Biochemical Engineering Journal, 77, 147–153.

    Article  CAS  Google Scholar 

  • Collier, N. C., Milestone, N. B., Gordon, L. E., & Ko, S. C. (2014). The suitability of a supersulfated cement for nuclear waste immobilisation. Journal of Nuclear Materials, 452, 457–464.

    Article  CAS  Google Scholar 

  • Gougar, M. L. D., Scheetz, B. E., & Roy, D. M. (1996). Ettringite and C-S-H Portland cement phases for waste ion immobilization: a review. Waste Management, 16, 295–303.

    Article  CAS  Google Scholar 

  • Guan, B., Kong, B., Fu, H., Yu, J., Jiang, G., & Yang, L. (2012). Pilot scale preparation of α-calcium sulfate hemihydrate from FGD gypsum in Ca–K–Mg aqueous solution under atmospheric pressure. Fuel, 98, 48–54.

    Article  CAS  Google Scholar 

  • Gunawan, E. K., Warmadewanthi, & Liu, J. C. (2010). Removal of phosphate and fluoride from optoelectronic wastewater by calcite. International Journal of Environmental Technology and Management, 12, 308–321.

  • Han, C., Wang, Z., Yang, W., Wu, Q., Yang, H., & Xue, X. (2016). Effects of pH on phosphorus removal capacities of basic oxygen furnace slag. Ecological Engineering, 89, 1–6.

    Article  CAS  Google Scholar 

  • Hashem, F. S., & Amin, M. S. (2014). Kinetic and thermal studies of removal of CrO4 2- ions by ettringite. Journal of Thermal Analysis and Calorimetry, 116, 835–844.

    Article  CAS  Google Scholar 

  • Hermassi, M., Valderrama, C., Dosta, J., Cortina, J. L., & Batis, N. H. (2015). Evaluation of hydroxyapatite crystallization in a batch reactor for the valorization of alkaline phosphate concentrates from wastewater treatment plants using calcium chloride. Chemical Engineering Journal, 267, 142–152.

    Article  CAS  Google Scholar 

  • Hongo, T., Tsunashima, Y., Iizuka, A., & Yamasaki, A. (2014). Synthesis of anion-exchange materials from concrete sludge and evaluation of their ability to remove harmful anions (borate, fluoride, and chromate). International Journal of Chemical Engineering and Applications, 5, 298–302.

    Article  CAS  Google Scholar 

  • Iizuka, A., Takahashi, M., Nakamura, T., & Yamasaki, A. (2014). Boron removal performance of a solid sorbent derived from waste concrete. Industrial and Engineering Chemistry Research, 53, 4046–4051.

    Article  CAS  Google Scholar 

  • Kanchana, P., & Sekar, C. (2010). Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method. Journal of Crystal Growth, 312, 808–816.

    Article  CAS  Google Scholar 

  • Komatsu, R., Mizukoshi, N., Makida, K., & Tsukamoto, K. (2009). In-situ observation of ettringite crystals. Journal of Crystal Growth, 311, 1005–1008.

    Article  CAS  Google Scholar 

  • Köse, T. E., & Kivanc, B. (2011). Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chemical Engineering Journal, 178, 34–39.

    Article  CAS  Google Scholar 

  • Lu, N. C., & Liu, J. C. (2010). Removal of phosphate and fluoride from wastewater by a hybrid precipitation–microfiltration process. Separation and Purification Technology, 74, 329–335.

    Article  CAS  Google Scholar 

  • Madzivire, G., Petrik, L. F., Gitari, W. M., Ojumu, T. V., & Balfour, G. (2010). Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite. Mining and Engineering, 23, 252–257.

    CAS  Google Scholar 

  • Myneni, S. C. B., Traina, S. J., Logan, T. J., & Waychunas, G. A. (1997). Oxyanion behavior in alkaline environments: sorption and desorption of arsenate in ettringite. Environmental Science & Technology, 31, 1761–1768.

    Article  CAS  Google Scholar 

  • Novillo, C., Guaya, D., Avendaño, A. A.-P., Armijos, C., Cortina, J. L., & Cota, I. (2014). Evaluation of phosphate removal capacity of Mg/Al layered double hydroxides from aqueous solutions. Fuel, 38, 72–79.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—a computer program, for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. Denver: U. S. Geological Survey Water-Resource Investigations Report 99–4259, USGS.

    Google Scholar 

  • Perassi, I., & Borgnino, L. (2014). Adsorption and surface precipitation of phosphate onto CaCO3–montmorillonite: effect of pH, ionic strength and competition with humic acid. Geoderma, 232-234, 600–608.

    Article  CAS  Google Scholar 

  • Qiu, L., Zheng, P., Zhang, M., Yu, X., & Chulam, A. (2015). Phosphorus removal using ferric-calcium complex as precipitant: parameters optimization and phosphorus-recycling potential. Chemical Engineering Journal, 268, 230–235.

    Article  CAS  Google Scholar 

  • Rathod, M., Mody, K., & Basha, S. (2014). Efficient removal of phosphate from aqueous solutions by red seaweed, Kappaphycus alverezii. Journal of Cleaner Production, 84, 484–493.

    Article  CAS  Google Scholar 

  • Saikia, N., Kato, S., & Kojima, T. (2006). Behavior of B, Cr, Se, As, Pb, Cd, and Mo present in waste leachates generated from combustion residues during the formation of ettringite. Environmental Toxicology and Chemistry, 25, 1710–1719.

    Article  CAS  Google Scholar 

  • Sasaki, T., Lizuka, A., Watanabe, M., Hongo, T., & Yamasaki, A. (2014). Preparation and performance of arsenate (V) adsorbents derived from concrete wastes. Waste Management, 34, 1829–1835.

    Article  CAS  Google Scholar 

  • Soetardji, J. P., Claudia, J. C., Ju, Y. H., Hriljac, J. A., Chen, T. Y., Soetaredjo, F. E., Santoso, S. P., Kurniawan, A., & Ismadji, S. (2015). Ammonia removal from water using sodium hydroxide modified zeolite mordenite. RSC Advances, 5, 83689–83699.

    Article  CAS  Google Scholar 

  • Tsunashima, Y., Iizuka, A., Akimoto, J., Hongo, T., & Yamasaki, A. (2012). Preparation of sorbents containing ettringite phase from concrete sludge and their performance in removing borate and fluoride ions from waste water. Chemical Engineering Journal, 200–202, 338–343.

    Article  CAS  Google Scholar 

  • Wajima, T., & Rakovan, J. F. (2013). Removal behavior of phosphate from aqueous solution by calcined paper sludge. Colloid Surfaces A: Physicochemical and Engineering Aspects, 432, 132–138.

    Article  CAS  Google Scholar 

  • Wang, T., Dorner-Reisel, A., & Ller, E. M. (2004). Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. Journal of the European Ceramic Society, 24, 693–698.

    Article  CAS  Google Scholar 

  • Xu, K., Deng, T., Liu, J., & Peng, W. (2010). Study on the phosphate removal from aqueous solution using modified fly ash. Fuel, 89, 3668–3674.

    Article  CAS  Google Scholar 

  • Yagi, S., & Fukushi, F. (2012). Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite. Journal of Colloid and Interface Science, 384, 128–136.

    Article  CAS  Google Scholar 

  • Yan, Y., Sun, X., Ma, F., Li, J., Shen, J., Han, W., Liu, X., & Wang, L. (2014). Removal of phosphate from wastewater using alkaline residue. Journal of Environmental Sciences, 26, 970–980.

    Article  CAS  Google Scholar 

  • Yang, S., Jin, P., Wang, X., Zhang, Q., & Chen, X. (2016). Phosphate recovery through adsorption assisted precipitation using novel precipitation material developed from building waste: behavior and mechanism. Chemical Engineering Journal, 292, 246–254.

    Article  CAS  Google Scholar 

  • Yu, Y., Wu, R., & Clark, M. (2010). Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell. Journal of Colloid and Interface Science, 350, 538–543.

    Article  CAS  Google Scholar 

  • Zhang, M., & Reardon, E. J. (2003). Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite. Environmental Science & Technology, 37, 2947–2952.

    Article  CAS  Google Scholar 

  • Zhou, W., Huang, Z., Sun, C., Zhao, H., & Zhang, Y. (2016). Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag. Bioresource Technology, 214, 534–540.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhy-Chern Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, RJ., Liu, JC. Removal of Phosphate Using Ettringite Synthesized from Industrial By-products. Water Air Soil Pollut 229, 185 (2018). https://doi.org/10.1007/s11270-018-3828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3828-8

Keywords

Navigation