Advertisement

Ciprofloxacin Adsorption on ZnO Supported on SBA-15

  • Watson R. D. N. Sousa
  • Antônio R. Oliveira
  • João F. Cruz Filho
  • Taisa C. M. Dantas
  • Anne G. D. Santos
  • Vínicius P. S. Caldeira
  • Geraldo E. LuzJr
Article

Abstract

Most drugs are synthesized by human medicine both for the treatment of men and animals and are also produced to maintain their physical and chemical properties for a time sufficient to serve a therapeutic purpose in treatments of some kind of illness. Ciprofloxacin is an antibiotic synthetically obtained in 1987 and belongs to the family of fluoroquinolones and is currently prescribed in certain treatments. This work was developed with the objective of evaluating the adsorption of the ciprofloxacin antibiotic in solution on zinc oxide (ZnO) supported on SBA-15-type mesoporous silica. The results showed that the post-synthesis method is effective in impregnating zinc oxide in SBA-15 and its structure has not been damaged and has not lost its organization in the hexagonal 2D planes. The ZnO-SBA-15 (10%) sample adsorbed 69.10% of ciprofloxacin (25 mg/L) in 180 min. Freundlich adsorption model was observed with the correlation factor of R2 = 0.9999, for the adsorbent ZnO-SBA-15 (10%), which showed the best sample. The kinetics was classified as pseudo-second order, as well as the thermodynamic parameters were determined, showing that the process has a spontaneous nature and a value of ΔH° = 4.677 kJ/mol, evidencing that the process has the nature of physiosorption.

Keywords

Zinc oxide SBA-15 Adsorption Ciprofloxacin 

Notes

Funding

The authors acknowledge the financial support of the Brazilian research financing CNPq (307559/2015-7; 455864/2014-4) and CAPES institutions.

References

  1. Akyol, A., & Bayramoğlu, M. (2005). Photocatalytic degradation of remazol red F3B using ZnO catalyst. Journal of Hazardous Materials, B124, 241–246.CrossRefGoogle Scholar
  2. Al-Kahlout, A. (2014). Thermal treatment optimization of ZnO nanoparticles photoelectrodes for high photovoltaic performance of dye-sensitized solar cells. Journal of the Association of Arab Universities for Basic and Applied Sciences, 17, 66–72.CrossRefGoogle Scholar
  3. Azizian, S. (2004). Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276, 47–52.CrossRefGoogle Scholar
  4. Babu, K. S., Reddy, A. R., Sujatha, C., & Reddy, K. V. (2012). Effect of Mg doping on photoluminescence of ZnO/MCM-41 nanocomposite. Ceramics International, 38(7), 5949–5956.CrossRefGoogle Scholar
  5. Bhuyan, D., Saikia, M., & Saikia, L. (2018). ZnO nanoparticles embedded in SBA-15 as an efficient heterogeneous catalyst for the synthesis of dihydropyrimidinones via Biginelli condensation reaction. Microporous and Mesoporous Materials, 256, 39–48.CrossRefGoogle Scholar
  6. Bila, M. D., & Dezotti, M. (2003). Fármacos no meio ambiente. Química Nova, 26(4), 523–530.CrossRefGoogle Scholar
  7. Blasioli, S., Martucci, A., Paul, G., Gigli, L., Cossi, M., Johnston, C. T., Marchese, L., & Braschi, I. (2014). Removal of sulfamethoxazole sulfonamide antibiotic from water by high silica zeolites: a study of the involved host–guest interactions by a combined structural, spectroscopic, and computational approach. Journal of Colloid and Interface Science, 419, 148–159.CrossRefGoogle Scholar
  8. Braschi, I., Blasioli, S., Gigli, L., Gessa, C. E., Alberti, A., & Martucci, A. (2010). Removal of sulfonamide antibiotics from water: evidence of adsorption into an organophilic zeolite Y by its structural modifications. Journal of Hazardous Materials, 178(1–3), 218–225.CrossRefGoogle Scholar
  9. Calvillo, L., Celorrio, V., Moliner, R., Cabot, P. L., Esparbé, I., & Lázaro, M. J. (2008). Control of textural properties of ordered mesoporous materials. Microporous and Mesoporous Materials, 116, 292–298.CrossRefGoogle Scholar
  10. Carraro, P., Elias, V., Blanco, A. G., Sapag, K., Moreno, S., Oliva, M., & Eimer, G. (2014). Synthesis and multi-technique characterization of nickel loaded MCM-41 as potential hydrogen-storage materials. Microporous and Mesoporous Materials, 191, 103–111.CrossRefGoogle Scholar
  11. Chang, X., Li, Z., Zhai, X., Sun, S., Gu, D., Dong, L., Yin, Y., & Zhu, Y. (2016). Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts. Materials and Design, 98, 324–332.CrossRefGoogle Scholar
  12. Danalioğlu, S. T., Bayazit, S. S., Kerkez, Ö., Alhougbi, B. G., & Salam, M. A. (2017). Removal of ciprofloxacin from aqueous solution using humic acid- and levulinic acid- coated Fe3O4 nanoparticles. Chem. Engin. Res. Design, 123, 259–267.CrossRefGoogle Scholar
  13. Danwittayakul, S., Jaisai, M., & Dutta, J. (2015). Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites. Applied Catalysis B: Environmental, 163, 1–8.CrossRefGoogle Scholar
  14. Desta, M. B. (2013). Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto Teff straw (Eragrostis tef) agricultural waste. Journal of Thermodynamics, 2013, 1–6.CrossRefGoogle Scholar
  15. di Bernardo, L., & Dantas, A. D. B. (2005). Métodos e técnicas de tratamento de água (2° ed.). São Carlos: Rima.Google Scholar
  16. Doorslaer, X. V., Dewulf, J., Langenhove, H. V., & Demeestere, K. (2014). Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. The Science of the Total Environment, 500–501, 250–269.CrossRefGoogle Scholar
  17. El-Kemary, M., El-Shamy, H., & El-Mehasseb, I. (2010). Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. Journal of Luminescence, 130, 2327–2331.CrossRefGoogle Scholar
  18. Etacheri, V., Valentin, C. D., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. Journal of Photochemistry and Photobiology, 25, 1–29.CrossRefGoogle Scholar
  19. Gao, J., Lu, Y., Zhang, X., Chen, J., Xu, S., Li, X., & Tan, F. (2015). Elucidating the electrostatic interaction of sulfonic acid functionalized SBA-15 for ciprofloxain adsorption. Applied Surface Science, 349(Part B), 224–229.CrossRefGoogle Scholar
  20. García-Muñoz, R. A., Morales, V., Linares, M., Gonzalez, P. E., Sanz, R., & Serrano, D. P. (2014). Influence of the structural and textural properties of ordered mesoporous materials and hierarchical zeolitic supports on the controlled release of methylprednisolone hemisuccinate. Journal of Materials Chemistry B, 2, 7996–8004.CrossRefGoogle Scholar
  21. Gessner, P. K., & Hasan, M. M. (1987). Freundlich and Langmuir isotherms as models for the adsorption of toxicants on activated charcoal. Journal of Pharmaceutical Sciences, 76(4), 319–327.CrossRefGoogle Scholar
  22. Ghasemi, S. M. S., & Azizi, A. (2017). Alkaline leaching of lead and zinc by sodium hydroxide: kinetics modelling. Journal of Materials Research and Technology, 6, 303–422.CrossRefGoogle Scholar
  23. Gignone, A., Piane, M. D., Corno, M., Ugliengo, P., & Onida, B. (2015). Simulation and experiment reveal a complex scenario for the adsorption of an antifungal drug in ordered mesoporous silica. Journal of Physical Chemistry C, 119, 13068–13079.CrossRefGoogle Scholar
  24. Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115–124.CrossRefGoogle Scholar
  25. HO, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  26. IUPAC - International Union of Pure and Applied Chemistry. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 1–19.Google Scholar
  27. Izquierdo-barba, I., Sousa, E., Doadrio, J. C., Doadrio, A. L., Pariente, J. P., Martínez, A., Babonneau, F., & Vallet-Regí, M. (2009). Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. Journal of Sol-Gel Science and Technology, 50, 421–429.CrossRefGoogle Scholar
  28. Jalil, M. E. R., Baschini, M., & Sapag, K. (2015). Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Applied Clay Science, 114, 69–76.CrossRefGoogle Scholar
  29. Ji, L., Wan, W., Zheng, S., & Zhu, D. (2011). Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption. Environmental Science & Technology, 45(13), 5580–5586.CrossRefGoogle Scholar
  30. Ji, Y.-X., Wang, F.-H., Duan, L.-C., Zhang, F., & Gong, X.-D. (2013). Effect of temperature on the adsorption of sulfanilamide onto aluminum oxide and its molecular dynamics simulations. Applied Surface Science, 285(Part B), 403–408.CrossRefGoogle Scholar
  31. Jiang, Q., Wu, Z. Y., Wang, Y. M., Cao, Y., Zhou, C. F., & Zhu, J. H. (2006). Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. Journal of Materials Chemistry, 16, 1536–1542.CrossRefGoogle Scholar
  32. Jiang, W.-T., Chang, P.-H., Wang, Y.-S., Tsai, Y., Jean, J.-S., Li, Z., & Krukowski, K. (2013). Removal of ciprofloxacin from water by birnessite. Journal of Hazardous Materials, 250-251, 362–369.CrossRefGoogle Scholar
  33. Jorgensen, S. E., & Halling-Sorensen, B. (2000). Drugs in the environment. Chemosphere, 7(7), 69–699.Google Scholar
  34. Klavarioti, M., Mantazavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Review article. Environment International, 35(2), 402–417.CrossRefGoogle Scholar
  35. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.CrossRefGoogle Scholar
  36. Konicki, W., Cendrowski, K., Chen, X., & Mijowska, E. (2013). Application of hollow mesoporous carbon nanospheres as an high effective adsorbent for the fast removal of acid dyes from aqueous solutions. Chemical Engineering Journal, 228, 824–833.CrossRefGoogle Scholar
  37. Kümmerer, K., Alahmad, A., & Merschsundermann, V. (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in sample test. Chemosphere, 40(7), 701–710.CrossRefGoogle Scholar
  38. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221–2295.CrossRefGoogle Scholar
  39. Li, H., Zhang, D., Han, X., & Xing, B. (2014). Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere, 95, 150–155.CrossRefGoogle Scholar
  40. Luz Jr., G. E., Lima, S. H., Melo, A. C. R., Araujo, A. S., & Fernandes, V. J. (2010). Direct synthesis and characterization of LaSBA-15 mesoporous molecular sieves. Journal of Materials Science, 45(4), 1117–1122.CrossRefGoogle Scholar
  41. Lv, K., Xiang, Q., & Yu, J. (2011). Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {001} facets. Applied Catalysis B: Environmental, 104, 275–281.CrossRefGoogle Scholar
  42. Ma, J., Yang, M., Yu, F., & Chen, J. (2015). Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution. Journal of Colloid and Interface Science, 444, 24–32.CrossRefGoogle Scholar
  43. Martín, A., Morales, V., Ortiz-Bustos, J., Pérez-Garnes, M., Bautista, L. F., García-Muñoz, R. A., & Sanz, R. (2018). Modelling the adsorption and controlled release of drugs from the pure and amino surface-functionalized mesoporous silica hosts. Microporous and Mesoporous Materials, 262, 23–34.CrossRefGoogle Scholar
  44. Mayrinck, C., Raphael, E., Ferrari, J. L., & Schiavon, M. A. (2014). Síntese, Propriedades e Aplicações de Óxido de Zinco Nanoestruturado. Revista Virtual de Quimica, 6(5), 1185–1204.Google Scholar
  45. Melo, S. A. S., Trovó, A. G., Bautitz, I. R., & Nogueira, R. F. P. (2009). Degradação de fármacos residuais por processos oxidativos avançados. Química Nova, 32(1), 188–197.CrossRefGoogle Scholar
  46. Miao, M.-S., Liu, Q., Shu, L., Wang, Z., Liu, Y.-Z., & Kong, Q. (2016). Removal of cephalexin from effluent by activated carbon prepared from alligator weed: kinetics, isotherms, and thermodynamic analyses. Process Safety and Environment Protection, 104(part B), 481–489.CrossRefGoogle Scholar
  47. Mierzwa, J. C., & Hespanhol, I. (2005). Água na Indústria: uso racional e reuso. São Paulo: Oficina de Textos.Google Scholar
  48. Mihai, G. D., Meynen, V., Mertens, M., Bilba, N., Cool, P., & Vansant, E. F. (2010). ZnO nanoparticles supported on mesoporous MCM-41 and SBA-15: a comparative physicochemical and photocatalytic study. Journal of Materials Science, 45, 5786–5794.CrossRefGoogle Scholar
  49. Moosavi, A., Sarrafi, M., Aghaei, A., Hessari, F. A., & Keyanpour-rad, M. (2012). Synthesis of mesoporous ZnO/SBA-15 composite via sonochemical route. Micro & Nano Letters, 7(2), 130–133.CrossRefGoogle Scholar
  50. Morales, V., Idso, M. N., Balabasquer, M., Chmelka, B., & García-Muñoz, R. A. (2016). Correlating surface-functionalization of mesoporous silica with adsorption and release of pharmaceutical guest species. Journal of Physical Chemistry C, 120, 16887–16898.CrossRefGoogle Scholar
  51. Ortiz-Bustos, J., Martín, A., Morales, V., Sanz, R., & García-Muñoz, R. A. (2017). Surface-functionalization of mesoporous SBA-15 silica materials for controlled release of methylprednisolone sodium hemisuccinate: influence of functionality type and strategies of incorporation. Microporous and Mesoporous Materials, 240, 236–245.CrossRefGoogle Scholar
  52. Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’shea, K., Entezari, M. H., & Dionysiou, D. D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349.CrossRefGoogle Scholar
  53. Peng, X., Huang, D., Odoom-Wubah, T., Fu, D., Huang, J., & Qin, Q. (2014). Adsorption of anionic and cationic dyes on ferromagnetic ordered mesoporous carbon from aqueous solution: equilibrium, thermodynamic and kinetics. Journal of Colloid and Interface Science, 430, 272–282.CrossRefGoogle Scholar
  54. Peng, X., Hu, F., Lam, F. L.-Y., Wang, Y., Liu, Z., & Dai, H. (2015). Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. Journal of Colloid and Interface Science, 460, 349–360.CrossRefGoogle Scholar
  55. Peng, X., Hu, F., Huang, J., Wang, Y., Dai, H., & Li, Z. (2016a). Preparation of a graphitic ordered mesoporous carbon and its application in sorption of ciprofloxacin: kinetics, isotherm, adsorption mechanisms studies. Microporous and Mesoporous Materials, 228, 196–206.CrossRefGoogle Scholar
  56. Peng, X., Hu, F., Dai, H., Xiong, Q., & Xu, C. (2016b). Study of the adsorption mechanisms of ciprofloxacin antibiotics onto graphitic ordered mesoporous carbons. Journal of the Taiwan Institute of Chemical Engineers, 65, 196–206.CrossRefGoogle Scholar
  57. Popova, M., Trendafilova, I., Szegedi, A., Mihály, J., Németh, P., Marinova, S. G., Aleksandrov, H. A., & Vayssilov, G. N. (2016). Experimental and theoretical study of quercetin complexes formed on pure silica and Zn-modified mesoporous MCM-41 and SBA-16 materials. Microporous and Mesoporous Materials, 228, 256–265.CrossRefGoogle Scholar
  58. Prieto, A., Möder, M., Rodil, R., Adrian, L., & Marco-Urrea, E. (2011). Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresource Technology, 102, 10987–10995.CrossRefGoogle Scholar
  59. Sanz-Pérez, E. S., Dantas, T. C. M., Arencibia, A., Calleja, G., Guedes, A. P. M. A., Araujo, A. S., & Sanz, R. (2017). Reuse and recycling of amine-functionalized silica materials for CO2 adsorption. Chemical Engineering Journal, 308, 1021–1033.CrossRefGoogle Scholar
  60. Sareen, S., Mutreja, V., Singh, S., & Pal, B. (2015). Highly dispersed Au, Ag and Cu nanoparticles in mesoporous SBA-15 for highly selective catalytic reduction of nitroaromatics. Royal Society of Chemistry, 5, 184–190.Google Scholar
  61. Taghavimoghaddam, J., Knowles, G. P., & Chaffee, A. L. (2012). Preparation and characterization of mesoporous silica supported cobalt oxide as a catalyst for the oxidation of cyclohexanol. Journal of Molecular Catalysis A: Chemical, 358, 79–88.CrossRefGoogle Scholar
  62. Tan, F., Suna, D., Gao, J., Zhao, Q., Wang, X., Teng, F., Quana, X., & Chen, J. (2013). Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. Journal of Hazardous Materials, 244–245, 750–757.CrossRefGoogle Scholar
  63. Wang, B., Leung, M. K. H., Lu, X. Y., & Chen, S. Y. (2013). Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Applied Energy, 112(1), 1190–1197.CrossRefGoogle Scholar
  64. Yan, Z.-L., Liu, Y.-G., Tan, X.-F., liu, S.-B., Zeng, G.-M., Jiang, L.-H., Li, M.-F., Zhou, Z., Liu, S., & Cai, X.-X. (2017). Immobilization of aqueous and sediment-sorbed ciprofloxacin by stabilized Fe-Mn binary oxide nanoparticles: Influencing factors and reaction mechanisms. Chemical Engineering Journal, 314, 612–621.CrossRefGoogle Scholar
  65. Zhang, W.-H., Shi, J.-L., Wang, L.-Z., & Yan, D.-S. (2000). Preparation and characterization of ZnO clusters inside mesoporous silica. Chemistry of Materials, 12, 1408–1413.CrossRefGoogle Scholar
  66. Zhang, Y., Zhou, J. L., & Ning, B. (2007). Photodegradation of estrone and 17β-estradiol in water. Water Research, 41(1), 19–26.CrossRefGoogle Scholar
  67. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 548.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Watson R. D. N. Sousa
    • 1
  • Antônio R. Oliveira
    • 2
  • João F. Cruz Filho
    • 2
  • Taisa C. M. Dantas
    • 1
    • 2
  • Anne G. D. Santos
    • 3
  • Vínicius P. S. Caldeira
    • 3
  • Geraldo E. LuzJr
    • 1
    • 2
  1. 1.PPGQ-DQUniversidade Federal do Piauí –UFPITeresinaBrazil
  2. 2.PPGQ-GERATEC-DQUniversidade Estadual do PiauíTeresinaBrazil
  3. 3.PPGQ-DQUniversidade do Estado do Rio Grande do NorteMossoróBrazil

Personalised recommendations