Modeling Pollutant Buildup and Washoff Parameters for SWMM Based on Land Use in a Semiarid Urban Watershed

  • Min-Cheng Tu
  • Patricia Smith


SWMM (Storm Water Management Model) has been widely used in urban water resources management. Despite its popularity, no commonly accepted pollutant buildup and washoff parameters are available for urban areas in semi-arid or arid climate, which covers 30% of global land area and is sustaining fast growth. This study provides a method to determine these parameters using inverse modeling and apply it in a semi-arid Texan urban watershed. Because GIS land use data is not available for early 1980s, it was determined from aerial photography from 1984 to 2006, and GIS land use data from 2006. Calibration using Shuffled Complex Evolution – University of Arizona (SCEUA) was used for hydraulic parameters followed by pollutant parameters. Confidence intervals of pollutant parameters were calculated by GLD (Generalized Lambda Distribution). Buildup parameters are clustered in narrow numerical ranges, indicating that spatially uniform factors are responsible for pollutant buildup. Washoff parameters do not cluster and are distributed more evenly, indicating strong influence of local factors such as topography. The results also imply that the commonly used parameter values need major revision.


Buildup Inverse modeling SCEUA Semiarid SWMM Washoff 



The support of data from city of Austin, TX, was highly appreciated.


  1. Barco O.J., Ciaponi C., & Papiri S. (2004). Pollution in storm water runoff—two cases: an urban catchment and a highway toll gate area. Novatech, 1–8.Google Scholar
  2. Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320, 18–36.CrossRefGoogle Scholar
  3. Chow, M. F., Yusop, Z., & Toriman, M. E. (2012). Modelling runoff quantity and quality in tropical urban catchments using storm water management model. International journal of Environmental Science and Technology, 9, 737–748.CrossRefGoogle Scholar
  4. Chow, M. F., Yusop, Z., & Shirazi, S. M. (2013). Storm runoff quality and pollutant loading from commercial, residential, and industrial catchments in the tropic. Environmental Monitoring and Assessment, 185, 8321–8331.CrossRefGoogle Scholar
  5. City of Austin. (2017). GIS Data. City of Austin. Accessed 30 November 2017.
  6. Doherty, J. (2010). PEST: Model-independent Parameter Estimation User Manual (5th ed.). Queensland: Watermark Numerical Computing.Google Scholar
  7. Duan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501–521.CrossRefGoogle Scholar
  8. Fischer, A., Rouault, P., Kroll, S., Assel, J. V., & Pawlowsky-Reusing, E. (2009). Possibilities of sewer model simplifications. Urban Water Journal, 6(6), 457–470.CrossRefGoogle Scholar
  9. Hernandez, M., Miller, S. N., Goodrich, D. C., Goff, B. F., Kepner, W. G., Edmonds, C. M., & Jones, K. B. (2000). Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. Environmental Monitoring and Assessment, 64, 285–298.CrossRefGoogle Scholar
  10. Hood, M., Reihan, A., & Loigu, E. (2007). Modeling urban stormwater runoff pollution in Tallinn, Estonia. Proceedings of International Symposium on New Directions in Urban Water Management. Paris, France: United Nations Educational, Scientific, and Cultural Organizations.Google Scholar
  11. Hossain, I., Imteaz, M., Gate-Trinidad, S., & Shanableh, A. (2010). Development of a catchment water quality model for continuous simulations of pollutants build-up and wash-off. International Journal of Civil and Environ. Eng., 2(4), 210–217.Google Scholar
  12. Hossain, I., Imteaz, M. A., & Hossain, M. I. (2012). Application of a catchment water quality model for an East-Australian catchment. International Journal of Global Environmental Issues, 12, 242–255.CrossRefGoogle Scholar
  13. Huber, W. C., & Dickinson, R. E. (1988). Storm Water Management Model, Version 4: User’s Manual. Athens, GA: U.S. Environmental Protection Agency.Google Scholar
  14. Ines, A. V. M., & Droogers, P. (2002). Inverse modelling in estimating soil hydraulic functions: a genetic algorithm approach. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 6(1), 49–66.CrossRefGoogle Scholar
  15. Karian, Z. A., & Dudewicz, E. J. (2000). Fitting statistical distributions: the generalized lambda distribution and generalized bootstrap methods. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  16. Leitao, J. P., Simoes, N. E., Maksimovic, C., Ferreira, F., Prodanovic, D., Matos, J. S., & Sa Marques, A. (2010). Real-time forecasting urban drainage models: full or simplified networks? Water Sci. and Tech., 62(9), 2106–2114.CrossRefGoogle Scholar
  17. Lim, K. J., Engel, B. A., Tang, Z., Choi, J., Kim, K.-S., Muthukrishnan, S., & Tripathy, D. (2005). Automated web GIS based hydrograph analysis tool, WHAT. Journal of the American Water Resources Association, 41(6), 1407–1416.CrossRefGoogle Scholar
  18. Multi-Resolution Land Characteristics Consortium (2017). National Land Cover Database (NLCD). U.S. Geological Survey. Accessed 30 Nov 2017.
  19. National Climatic Data Center (2017). National Climatic Data Center. National Climatic Data Center. Accessed 30 November 2017.
  20. Natural Resources Conservation Services (2017). Web Soil Survey. NRCS, Office of the Chief. Accessed 30 Nov 2017.
  21. Park, M.-H., Swamikannu, X., & Stenstrom, M. K. (2009). Accuracy and precision of the volume concentration method for urban stormwater modeling. Water Research, 43, 2773–2786.CrossRefGoogle Scholar
  22. Rossman, L. A. (2010). Storm Water Management Model User’s Manual, Version 5.0. Cincinnati, OH: National Risk Management Research Laboratory.Google Scholar
  23. Ruelland, D., Ardoin-Bardin, S., Billen, G., & Servat, E. (2008). Sensitivity of a lumped and semi-distributed hydrological model to several methods of rainfall interpolation on a large basin in West Africa. Journal of Hydrology, 361, 96–117.CrossRefGoogle Scholar
  24. Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20, 3335–3370.CrossRefGoogle Scholar
  25. Soonthornnonda, P., Christensen, E. R., Liu, Y., & Li, J. (2008). A washoff model for stormwater pollutants. The Science of the Total Environment, 402, 248–256.CrossRefGoogle Scholar
  26. Su, S. (2009). Confidence intervals for quantiles using generalized lambda distributions. Computational Statistics and Data Analysis, 53, 3324–3333.CrossRefGoogle Scholar
  27. Temprano, J., Arango, O., Cagiao, J., Suarez, J., & Tejero, I. (2006). Stormwater quality calibration by SWMM: a case study in Northern Spain. Water SA, 32(1), 55–63.Google Scholar
  28. Tsihrintzis, V. A., & Hamid, R. (1997). Modeling and management of urban stormwater runoff quality: a review. Water Resources Management, 11(2), 136–164.CrossRefGoogle Scholar
  29. United States Environmental Protection Agency (1983). Results of the nationwide urban runoff program. WH-544. Water Planning Division, U.S. EPA. Accessed 30 Nov 2017.
  30. United States Geological Survey (2017a). USGS water data for the nation. United States Geological Survey Headquarters. Accessed 30 Nov 2017.
  31. United States Geological Survey (2017b). The national map viewer and download platform. United States Geological Survey Headquarters. Accessed 30 Nov 2017.
  32. Urbonas, B., & Stahre, P. (1993). Stormwater best management practices and detention for water quality, drainage, and CSO management. Englewood Cliffs, NJ: PTR Prentice-Hall.Google Scholar
  33. Van Griensven, A., & Meixner, T. (2007). A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models. Journal of Hydroinformatics, 9(4), 277–291.CrossRefGoogle Scholar
  34. Wang, B., & Li, T. (2009). Buildup characteristics of roof pollutants in the Shanghai urban area, China. Journal of Zhejiang University. Science. A, 10(9), 1374–1382.CrossRefGoogle Scholar
  35. Wicke, D., Cochrane, T. A., & O’Sullivan, A. (2012). Build-up dynamics of heavy metals deposited on impermeable urban surfaces. Journal of Environmental Management, 113, 347–354.CrossRefGoogle Scholar
  36. Wilby, R. L. (2005). Uncertainty in water resource model parameters used for climate change impact assessment. Hydrological Processes, 19, 3201–3219.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringVillanova UniversityVillanovaUSA
  2. 2.Villanova Urban Stormwater Partnership (VUSP)Villanova UniversityVillanovaUSA
  3. 3.Department of Biological and Agricultural EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations