Advertisement

Kinetic, Equilibrium, and Thermodynamic Analyses of Ni(II) Biosorption from Aqueous Solution by Acorn Shell of Quercus crassipes

  • E. Aranda-García
  • E. Cristiani-Urbina
Article

Abstract

Exposure to divalent nickel [Ni(II)] poses a significant risk to human health. The present study was conducted to evaluate the biosorption capacity of acorn shell of Quercus crassipes Humb. & Bonpl. (QCS) for removal of Ni(II) ions from aqueous solutions in terms of kinetics, equilibrium, and thermodynamics. Batch biosorption studies showed that the Ni(II) biosorption behavior of QCS is strongly dependent on solution pH, shaking contact time, initial Ni(II) concentration, and temperature. Specifically, Ni(II) biosorption was found to increase with increasing solution pH, contact time, initial Ni(II) concentration, and temperature. Modeling of the Ni(II) biosorption kinetic and equilibrium data showed that the best agreement of experimental data was achieved with the pseudo-second-order kinetics model and the Freundlich isotherm model, respectively. The calculated thermodynamic parameters indicated that the Ni(II) biosorption process was endothermic, non-spontaneous, and chemical in nature. Fourier-transform infrared (FTIR) spectroscopy analysis showed that acidic functional groups, namely hydroxyl, carbonyl, and carboxyl functional groups, present on the QCS surface are likely to be involved in the biosorption of Ni(II) ions. The performance of QCS was compared with those of other reported biosorbents in terms of the efficiency of Ni(II) removal from aqueous solutions, revealing that QCS is highly effective in terms of its biosorption capacity. These findings indicate that QCS can be used as a low-cost, highly effective, and environmentally friendly alternative biosorbent for the detoxification of Ni(II)-contaminated water and wastewater.

Keywords

Biosorption Equilibrium Kinetics Nickel Quercus crassipes Thermodynamics 

Notes

Funding Information

This work was financially supported by the Secretaría de Investigación y Posgrado, IPN, Mexico. The CONACyT awarded a graduate scholarship to one of the authors (E. Aranda-García). E. Cristiani-Urbina is a holder of grants from COFAA-IPN, EDI-IPN, and SNI-CONACyT.

References

  1. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997–1026.CrossRefGoogle Scholar
  2. Aksu, Z., Tatli, A. I., & Tunç, O. (2008). A comparative adsorption/biosorption study of acid blue 161: effect of temperature on equilibrium and kinetic parameters. Chemical Engineering Journal, 142(1), 23–39.CrossRefGoogle Scholar
  3. Al-Asheh, S., Banat, F., & Mohai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere, 39(12), 2087–2096.CrossRefGoogle Scholar
  4. Alomá, I., Martín-Lara, M. A., Rodríguez, I. L., Blázquez, G., & Calero, M. (2012). Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers, 43(2), 275–281.CrossRefGoogle Scholar
  5. Alpat, Ş., Alpat, S. K., Çadirci, B. H., Özbayrak, Ö., & Yasa, I. (2010). Effects of biosorption parameter: kinetics, isotherm and thermodynamics for Ni(II) biosorption from aqueous solution by Circinella sp. Electronic Journal of Biotechnology, 13(5).Google Scholar
  6. Aranda-García, E., Morales-Barrera, L., Pineda-Camacho, G., & Cristiani-Urbina, E. (2014). Effect of pH, ionic strength, and background electrolytes on Cr(VI) and total chromium removal by acorn shell of Quercus crassipes Humb. & Bonpl. Environmental Monitoring and Assessment, 186(10), 6207–6221.CrossRefGoogle Scholar
  7. Aranda-García, E., Netzahuatl-Muñoz, A. R., Cristiani-Urbina, M. D. C., Morales-Barrera, L., Pineda-Camacho, G., & Cristiani-Urbina, E. (2010). Bioreduction of Cr(VI) and chromium biosorption by acorn shell of Quercus crassipes Humb. & Bonpl. Journal of Biotechnology, 150(S1), 228.CrossRefGoogle Scholar
  8. Argun, M. E., Dursun, S., Ozdemir, C., & Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. Journal of Hazardous Materials, 141(1), 77–85.CrossRefGoogle Scholar
  9. Asgher, M. (2012). Biosorption of reactive dyes: a review. Water, Air, and Soil Pollution, 223, 2417–2435.CrossRefGoogle Scholar
  10. Basha, S., & Murthy, Z. V. P. (2007). Kinetic and equilibrium models for biosorption of Cr(VI) on chemically modified seaweed, Cystoseira indica. Process Biochemistry, 42(11), 1521–1529.CrossRefGoogle Scholar
  11. Brocato, J., & Costa, M. (2015). 10th NTES Conference: nickel and arsenic compounds alter the epigenome of peripheral blood mononuclear cells. Journal of Trace Elements in Medicine and Biology, 31, 209–213.CrossRefGoogle Scholar
  12. Bulut, Y., & Tez, Z. (2007). Adsorption studies on ground shells of hazelnut and almond. Journal of Hazardous Materials, 149(1), 35–41.CrossRefGoogle Scholar
  13. Can, M. Y., Kaya, Y., & Algur, O. F. (2006). Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris. Bioresource Technology, 97(14), 1761–1765.CrossRefGoogle Scholar
  14. Chergui, A., Madjene, F., Trari, M., & Khouider, A. (2014). Nickel removal by biosorption onto medlar male flowers coupled with photocatalysis on the spinel ZnMn2O4. Journal of Environmental Health Science and Engineering, 12, 13.CrossRefGoogle Scholar
  15. Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 1–23). Chichester: Wiley.Google Scholar
  16. Das, K. K., & Buchner, V. (2007). Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid. Reviews on Environmental Health, 22(2), 133–149.CrossRefGoogle Scholar
  17. Das, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals—an overview. Indian Journal of Biotechnology, 7, 159–169.Google Scholar
  18. Dilek, F. B., Erbay, A., & Yetis, U. (2002). Nickel(II) biosorption by Polyporous versicolor. Process Biochemistry, 37(7), 723–726.CrossRefGoogle Scholar
  19. Doğan, M., Abak, H., & Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: kinetics, mechanisms and activation parameters. Journal of Hazardous Materials, 164(1), 172–181.CrossRefGoogle Scholar
  20. Dubey, D., & Pandey, A. (2011). Effect of nickel(II) on chlorophyll, lipid peroxidation and antioxidant enzymes activities in black gram (Vigna mungo) leaves. International Journal of Science and Nature, 2(2), 395–401.Google Scholar
  21. Ewecharoen, A., Thiravetyan, P., & Nakbanpote, W. (2008). Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith. Chemical Engineering Journal, 137(2), 181–188.CrossRefGoogle Scholar
  22. Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, 162(2–3), 616–645.CrossRefGoogle Scholar
  23. Flores-Garnica, J. G., Morales-Barrera, L., Pineda-Camacho, G., & Cristiani-Urbina, E. (2013). Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds. Bioresource Technology, 136, 635–643.CrossRefGoogle Scholar
  24. Fomina, M., & Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14.CrossRefGoogle Scholar
  25. Fosso-Kankeu, E., Mulaba-Bafubiandi, A. F., & Barnard, T. G. (2014). Establishing suitable conditions for metals recovery from metal saturated Bacillaceae bacterium using experimental design. International Biodeterioration & Biodegradation, 86, 218–224.CrossRefGoogle Scholar
  26. Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28.CrossRefGoogle Scholar
  27. Giles, C. H., MacEwan, T. H., Nakhwa, S. N., & Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society, 3, 3973–3993.CrossRefGoogle Scholar
  28. Gill, R., Mahmood, A., & Nazir, R. (2013). Biosorption potential and kinetic studies of vegetable waste mixture for the removal of nickel(II). Journal of Material Cycles and Waste Management, 15(2), 115–121.CrossRefGoogle Scholar
  29. Gupta, V. K., Suhas, Nayak, A., Agarwal, S., Chaudhary, M., & Tyagi, I. (2014). Removal of Ni(II) ions from water using scrap tire. Journal of Molecular Liquids, 190, 215–222.CrossRefGoogle Scholar
  30. Gürel, L. (2017). Applications of biosorption process for nickel removal from aqueous solutions—a review. Chemical Engineering Communications, 204(6), 711–722.CrossRefGoogle Scholar
  31. Gutha, Y., Munagapati, V. S., Naushad, M., & Abburi, K. (2015). Removal of Ni(II) from aqueous solution by Lycopersicum esculentum (tomato) leaf powder as a low-cost biosorbent. Desalination and Water Treatment, 54(1), 200–208.CrossRefGoogle Scholar
  32. Hernández-Estévez, A., & Cristiani-Urbina, E. (2014). Nickel(II) biosorption from aqueous solutions by shrimp head biomass. Environmental Monitoring Assessment, 186(11), 7987–7998.CrossRefGoogle Scholar
  33. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.CrossRefGoogle Scholar
  34. Ho, Y. S., Wase, D. A. J., & Forster, C. F. (1995). Batch nickel removal from aqueous solution by sphagnum moss peat. Water Research, 29(5), 1327–1332.CrossRefGoogle Scholar
  35. Kalyani, S., Srinivasa, R. P., & Krishnaiah, K. (2004). Removal of nickel(II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere, 57(9), 1225–1229.CrossRefGoogle Scholar
  36. Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chemical Engineering Journal, 145(3), 489–495.CrossRefGoogle Scholar
  37. Khan, M. A., Ngabura, M., Choong, T. S. Y., Masood, H., & Chuah, L. A. (2012). Biosorption and desorption of nickel on oil cake: batch and column studies. Bioresource Technology, 103(1), 35–42.CrossRefGoogle Scholar
  38. Kubrak, O. I., Rovenko, B. M., Husak, V. V., Storey, J. M., Storey, K. B., & Luschchak, V. I. (2012). Nickel induces hyperglycemia and glycogenolysis and affects the antioxidant system in liver and white muscle of goldfish Carassius auratus. Ecotoxicology and Environmental Safety, 80, 231–237.CrossRefGoogle Scholar
  39. Lam, Y. F., Lee, L. Y., Chua, S. J., Lim, S. S., & Gan, S. (2016). Insights into the equilibrium, kinetic, and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent. Ecotoxicology and Environmental Safety, 127, 61–70.CrossRefGoogle Scholar
  40. Lim, L. B. L., Priyantha, N., Hakimah, N., & Mansor, N. H. M. (2015). Artocarpus altilis (breadfruit) skin as a potential low-cost biosorbent for the removal of crystal violet dye: equilibrium, thermodynamics and kinetic studies. Environmental Earth Sciences, 73(7), 3239–3247.CrossRefGoogle Scholar
  41. Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthès, V., & Krimissa, M. (2007). Sorption isotherms: a review on physical bases, modeling and measurement. Applied Geochemistry, 22(2), 249–275.CrossRefGoogle Scholar
  42. Liu, Y., & Liu, Y.-J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61(3), 229–242.CrossRefGoogle Scholar
  43. Malamis, S., & Katsou, E. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252-253, 428–461.CrossRefGoogle Scholar
  44. Malkoc, E. (2006). Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. Journal of Hazardous Materials, B137(2), 899–908.CrossRefGoogle Scholar
  45. Maroney, M. J., & Ciurli, S. (2014). Nonredox nickel enzymes. Chemical Reviews, 114(8), 4206–4228.CrossRefGoogle Scholar
  46. Mishra, A., Triphati, B. D., & Rai, A. K. (2014). Biosorption of Cr(VI) and Ni(II) onto Hydrilla verticillata dried biomass. Ecological Engineering, 73, 713–723.CrossRefGoogle Scholar
  47. Mitchell, A. M., & Mellon, M. G. (1945). Colorimetric determination of nickel with dimethylglyoxime. Industrial and Engineering Chemistry, Analytical Edition, 17(6), 380–382.CrossRefGoogle Scholar
  48. Mohammady, N. G., & Fathy, A. A. (2007). Humic acid mitigates viability reduction, lipids and fatty acids of Dunaliella salina and Nannochloropsis salina grown under nickel stress. International Journal of Botany, 3(1), 64–70.CrossRefGoogle Scholar
  49. Monteiro, R. J. R., Lopes, C. B., Rocha, L. S., Coelho, J. P., Duarte, A. C., & Pereira, E. (2016). Sustainable approach for recycling seafood wastes for the removal of priority hazardous substances (Hg and Cd) from water. Journal of Environmental Chemical Engineering, 4, 1199–1208.CrossRefGoogle Scholar
  50. Moyo, M., Pakade, V. E., & Modise, S. J. (2017). Biosorption of lead(II) by chemically modified Mangifera indica seed shells: adsorbent preparation, characterization and performance assessment. Process Safety and Environmental Protection, 111, 40–51.CrossRefGoogle Scholar
  51. Netzahuatl-Muñoz, A. R., Cristiani-Urbina, M. D. C., & Cristiani-Urbina, E. (2015). Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark: kinetics, equilibrium and thermodynamic studies. PLoS One, 10(9), e0137086.CrossRefGoogle Scholar
  52. Netzahuatl-Muñoz, A. R., Guillén-Jiménez, F. D. M., Chávez-Gómez, B., Villegas-Garrido, T. L., & Cristiani-Urbina, E. (2012). Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by Cupressus lusitanica bark. Water, Air, & Soil Pollution, 223(2), 625–641.CrossRefGoogle Scholar
  53. Ozsoy, H. D., & van Leeuwen, J. H. (2012). Fungal biosorption of Ni(II) ions. In K. Gopalakrishnan, J. H. van Leeuwen, & R. C. Brown (Eds.), Sustainable bioenergy and bioproducts, green energy and technology (pp. 45–58). London: Springer-Verlag.CrossRefGoogle Scholar
  54. Öztürk, A., Artan, T., & Ayar, A. (2004). Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids and Surfaces B: Biointerfaces, 34(2), 105–111.CrossRefGoogle Scholar
  55. Padmavathy, V., Vasudevan, P., & Dhingra, S. C. (2003a). Biosorption of nickel(II) ions on baker’s yeast. Process Biochemistry, 38(10), 1389–1395.CrossRefGoogle Scholar
  56. Padmavathy, V., Vasudevan, P., & Dhingra, S. C. (2003b). Thermal and spectroscopic studies on sorption of nickel(II) on protonated baker’s yeast. Chemosphere, 52(10), 1807–1817.CrossRefGoogle Scholar
  57. Pandey, P. K., Choubey, S., Verma, Y., Pandey, M., Kamal, S. S. K., & Chandrashekhar, K. (2007). Biosorptive removal of Ni(II) from wastewater and industrial effluent. International Journal of Environmental Research and Public Health, 4(4), 332–339.CrossRefGoogle Scholar
  58. Park, D., Yun, Y.-S., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86–102.CrossRefGoogle Scholar
  59. Poonkothai, M., & Vijayavathi, B. S. (2012). Nickel as an essential element and a toxicant. International Journal of Environmental Sciences, 1(4), 285–288.Google Scholar
  60. Popuri, S. R., Vijaya, Y., Boddu, V. M., & Abburi, K. (2009). Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 100(1), 194–199.CrossRefGoogle Scholar
  61. Pradhan, S., Singh, S., & Rai, L. C. (2007). Characterization of various functional groups present in the capsule of Microcystis and study of their role in biosorption of Fe, Ni and Cr. Bioresource Technology, 98(3), 595–601.CrossRefGoogle Scholar
  62. Puentes-Cárdenas, I. J., Chávez-Camarillo, G. M., Flores-Ortiz, C. M., Cristiani-Urbina, M. D. C., Netzahuatl-Muñoz, A. R., Salcedo-Reyes, J. C., et al. (2016). Adsorptive removal of acid blue 80 dye from aqueous solutions by Cu-TiO2. Journal of Nanomaterials, 2016, ID 3542359.Google Scholar
  63. Raval, N. P., Shah, P. U., & Shah, N. K. (2016). Adsorptive removal of nickel(II) ions from aqueous environment: a review. Journal of Environmental Management, 179, 1–20.CrossRefGoogle Scholar
  64. Sadaf, S., & Bhatti, H. N. (2014). Evaluation of peanut husk as a novel, low cost biosorbent for the removal of Indosol Orange RSN dye from aqueous solutions: batch and fixed bed studies. Clean Technologies and Environmental Policy, 16(3), 527–544.CrossRefGoogle Scholar
  65. Saeed, A., Iqbal, M., & Höll, W. H. (2009). Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk. Journal of Hazardous Materials, 168(2–3), 1467–1475.CrossRefGoogle Scholar
  66. Salehi, P., Tajabadi, F. M., Younesi, H., & Dashti, Y. (2014). Optimization of lead and nickel biosorption by Cystoseira trinodis (brown algae) using response surface methodology. Clean-Soil, Air, Water, 42(3), 243–250.CrossRefGoogle Scholar
  67. Sánchez-Galván, G., & Ramírez-Nuñez, P. A. (2014). Cationic dye biosorption by Salvinia minima: equilibrium and kinetics. Water, Air, & Soil Pollution, 225, 2008.CrossRefGoogle Scholar
  68. Sar, P., Kazy, S. K., Asthana, R. K., & Singh, S. P. (1999). Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. International Biodeterioration & Biodegradation, 44(2–3), 101–110.CrossRefGoogle Scholar
  69. Sawalha, M. F., Peralta-Videa, J. R., Saupe, G. B., Dokken, K. M., & Gardea-Torresdey, J. L. (2007). Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass. Chemosphere, 66(8), 1424–1430.CrossRefGoogle Scholar
  70. Schaumlöffel, D. (2012). Nickel species: analysis and toxic effects. Journal of Trace Elements in Medicine and Biology, 26(1), 1–6.CrossRefGoogle Scholar
  71. Shin, E. W., Karthikeyan, K. G., & Tshabalala, M. A. (2007). Adsorption mechanism of cadmium on juniper bark and wood. Bioresource Technology, 98(3), 588–594.CrossRefGoogle Scholar
  72. Shin, W.-S., & Kim, Y.-K. (2014). Biosorption characteristics of heavy metals (Ni2+, Zn2+, Cd2+, Pb2+) from aqueous solution by Hizikia fusiformis. Environmental Earth Sciences, 71(9), 4107–4114.CrossRefGoogle Scholar
  73. Suazo-Madrid, A., Morales-Barrera, L., Aranda-García, E., & Cristiani-Urbina, E. (2011). Nickel(II) biosorption by Rhodotorula glutinis. Journal of Industrial Microbiology & Biotechnology, 38(1), 51–64.CrossRefGoogle Scholar
  74. Subbaiah, M. V., & Yun, Y. S. (2013). Biosorption of nickel(II) from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass: equilibrium, kinetics, and thermodynamic studies. Biotechnology and Bioprocess Engineering, 18(2), 280–288.CrossRefGoogle Scholar
  75. Sudha, R., & Srinivasan, K. (2015). Nickel(II) removal using modified Citrus limettioides peel. International Journal of Environmental Science and Technology, 12(12), 3993–4004.CrossRefGoogle Scholar
  76. Sujatha, P., Kalarani, V., & Naresh, K. B. (2013). Effective biosorption of nickel(II) from aqueous solutions using Trichoderma viride. Journal of Chemistry, 2013.  https://doi.org/10.1155/2013/716098.
  77. Tovar-Sánchez, E., & Oyama, K. (2004). Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. American Journal of Botany, 91(9), 1352–1363.CrossRefGoogle Scholar
  78. Vafakhah, S., Bahrololoom, M. E., Bazarganlari, R., & Saeedikhani, M. (2014). Removal of copper ions from electroplating effluent solutions with native corn cob and corn stalk and chemically modified corn stalk. Journal of Environmental Chemical Enginering, 2, 356–361.CrossRefGoogle Scholar
  79. Vázquez-Palma, D. E., Netzahuatl-Muñoz, A. R., Pineda-Camacho, G., & Cristiani-Urbina, E. (2017). Biosorptive removal of nickel(II) ions from aqueous solutions by Hass avocado (Persea americana Mill. var. Hass) shell as an effective and low-cost biosorbent. Fresenius Environmental Bulletin, 26(5), 3501–3513.Google Scholar
  80. Vijayaraghavan, K. (2008). Biosorption of nickel from synthetic and electroplating industrial solutions using a green marine algae Ulva reticulata. Clean-Soil, Air, Water, 36(3), 299–305.CrossRefGoogle Scholar
  81. Vijayaraghavan, K., Padmesh, T. V. N., Palanivelu, K., & Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133(1–3), 304–308.CrossRefGoogle Scholar
  82. Volesky, B. (2003). Sorption and biosorption. Montreal-St. Lambert: BV Sorbex, Inc.Google Scholar
  83. Xu, H., Liu, Y., & Tay, J.-H. (2006). Effect of pH on nickel biosorption by aerobic granular sludge. Bioresource Technology, 97(3), 359–363.CrossRefGoogle Scholar
  84. Zafar, M. N., Nadeem, R., & Hanif, M. A. (2007). Biosorption of nickel from protonated rice bran. Journal of Hazardous Materials, 143(1–2), 478–485.CrossRefGoogle Scholar
  85. Zhang, X., & Wang, X. (2015). Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One, 10(2), e0117077.CrossRefGoogle Scholar
  86. Zhong, Q.-Q., Yue, Q.-Y., Li, Q., Gao, B.-Y., & Xu, X. (2014). Removal of Cu(II) and Cr(VI) from wastewater by an amphoteric sorbent based on cellulose-rich biomass. Carbohydrate Polymers, 111, 788–796.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Escuela Nacional de Ciencias Biológicas, Departamento de Ingeniería BioquímicaInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations