Sorption of Uranium on a Bifunctional Polymer of Diethylenetriaminepentaacetic Acid Cross-Linked β-Cyclodextrin in the Presence of Humic Acid: Kinetics, Isotherms, and Thermodynamics

  • Ying Dai
  • Riwen Lv
  • Dejuan Huang
  • Qinqin TaoEmail author


Humic acid (HA) plays an important role in the migration and transformation of uranium in natural waters. To effectively remove uranium in the presence of HA, a bifunctional polymer, diethylenetriaminepentaacetic acid cross-linked β-cyclodextrin (DTPA-β-CD), was synthesized by polycondensation reaction. The sorption performance of DTPA-β-CD in functions of pH, ionic strength, contact time, initial time, and temperature were explored batch wise. Experimental results showed that DTPA-β-CD could concurrently sorb uranium and HA around pH of 3.0. The sorption strongly depended on pH and on ionic strength, demonstrating outer-sphere surface complex in nature. Two sorption kinetics well followed pseudo-second-order model. Sorption isotherm accorded with Sips model. Increasing temperature facilitated uranium and restrained HA sorption. This work demonstrated that DTPA-β-CD was a promising material for sorbing uranium in the presence of HA.


Sorption Uranyl Humic acid Diethylenetriaminepentaacetic acid β-Cyclodextrin 


Funding Information

The present work was financially supported by the National Natural Science Foundation of China (Nos. 11605027, 11705060, 41361088), the Project of the Jiangxi Provincial Department of Education (No. GJJ150560), and the Open Fund Project of State Key Laboratory of Nuclear Resources and Environment of East China Institute of Technology (NRE1512, NRE1410).


  1. Abdi, S., Nasiri, M., Mesbahi, A., & Khani, M. H. (2017). Investigation of uranium (VI) adsorption by polypyrrole. Journal of Hazardous Materials, 332, 132–139.CrossRefGoogle Scholar
  2. Ang, W. L., Mohammad, A. W., Teow, Y. H., Benamor, A., & Hilal, N. (2015). Hybrid chitosan/FeCl3 coagulation—membrane processes: performance evaluation and membrane fouling study in removing natural organic matter. Separation and Purification Technology, 152, 23–31.CrossRefGoogle Scholar
  3. Badruddoza, A. Z. M., Hazel, G. S. S., Hidajat, K., & Uddin, M. S. (2010). Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367(1), 85–95.CrossRefGoogle Scholar
  4. Bandow, N., & Simon, F. G. (2016). Significance of cadmium from artists’ paints to agricultural soil and the food chain. Environmental Sciences Europe, 28(1), 12.CrossRefGoogle Scholar
  5. Bayramoglu, G., & Arica, M. Y. (2016). MCM-41 silica particles grafted with polyacrylonitrile: modification in to amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous and Mesoporous Materials, 226, 117–124.CrossRefGoogle Scholar
  6. Bhatt, R., Sreedhar, B., & Padmaja, P. (2015). Adsorption of chromium from aqueous solutions using crosslinked chitosan-diethylenetriaminepentaacetic acid. International Journal of Biological Macromolecules, 74, 458–466.CrossRefGoogle Scholar
  7. Bugter, M., & Reichwein, A. M. A. (2005). pH stability of Fe-chelates in soilless culture. International Conference and Exhibition on Soilless Culture, ICESC, 742, 61–66.Google Scholar
  8. Caccin, M., Giacobbo, F., Da Ros, M., Besozzi, L., & Mariani, M. (2013). Sorption of uranium, cesium and strontium onto coconut shell activated carbon. Journal of Radioanalytical and Nuclear Chemistry, 297(1), 9–18.CrossRefGoogle Scholar
  9. Chen, L., Zhao, D., Chen, S., Wang, X., & Chen, C. (2016). One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium (VI) removal. Journal of Colloid and Interface Science, 472, 99–107.CrossRefGoogle Scholar
  10. Chen, L., Bai, Z., Zhu, L., Zhang, L., Cai, Y., Li, Y., Liu, W., Wang, Y. L., Chen, L. H., Diwu, J., Wang, J. Q., Chai, Z. F., & Wang, S. A. (2017a). Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework. ACS Applied Materials & Interfaces, 9(38), 32446–32451.CrossRefGoogle Scholar
  11. Chen, H., Koopal, L. K., Xiong, J., Avena, M., & Tan, W. (2017b). Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. Journal of Colloid and Interface Science, 504(15), 457–467.CrossRefGoogle Scholar
  12. Dong, C., Chen, W., Liu, C., Liu, Y., & Liu, H. (2014). Synthesis of magnetic chitosan nanoparticle and its sorption property for humic acid from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446, 179–189.CrossRefGoogle Scholar
  13. Fan, L., Luo, C., Sun, M., Qiu, H., & Li, X. (2013). Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanosorbent and its application in dye adsorption and removal. Colloids and Surfaces B: Biointerfaces, 103, 601–607.CrossRefGoogle Scholar
  14. Galvão, J. G., Silva, V. F., Ferreira, S. G., França, F. R. M., Santos, D., Freitas, L. S., Alves, P. B., Araújo, A. A. S., Cavacanti, S. C. H., & Nunes, R. S. (2015). β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochimica Acta, 608, 14–19.CrossRefGoogle Scholar
  15. Gao, J. K., Hou, L. A., Zhang, G. H., & Gu, P. (2015). Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution. Journal of Hazardous Materials, 286, 325–333.CrossRefGoogle Scholar
  16. Gralla, F., John, B., Abson, D. J., Møller, A. P., Bickel, M., Lang, D. J., & von Wehrden, H. (2016). The role of sustainability in nuclear energy plans—what do national energy strategies tell us? Energy Research & Social Science, 22, 94–106.CrossRefGoogle Scholar
  17. Grimes, T. S., Tillotson, R. D., & Martin, L. R. (2014). Trivalent lanthanide/actinide separation using aqueous-modified TALSPEAK chemistry. Solvent Extraction and Ion Exchange, 32(4), 378–390.CrossRefGoogle Scholar
  18. Hou, Y. N., Xing, Y. H., Bai, F. Y., Guan, Q. L., Wang, X., Zhang, R., & Shi, Z. (2014). Synthesis, crystal structure, photoluminescence property and photoelectronic behavior of two uranyl-organic frameworks constructed from 1, 2, 4, 5-benzenetetracarboxylic acid as ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 123, 267–272.CrossRefGoogle Scholar
  19. Huang, Z., Li, Z., Zheng, L., Zhou, L., Chai, Z., Wang, X., & Shi, W. (2017). Interaction mechanism of uranium (VI) with three-dimensional graphene oxide-chitosan composite: insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chemical Engineering Journal, 328, 1066–1074.CrossRefGoogle Scholar
  20. Joseph, C., Schmeide, K., Sachs, S., Brendler, V., Geipel, G., & Bernhard, G. (2011). Sorption of uranium (VI) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water. Chemical Geology, 284(3), 240–250.CrossRefGoogle Scholar
  21. Kong, L., Zhu, Y., Wang, M., Li, Z., Tan, Z., Xu, R., Tang, H., Chang, X., Xiong, Y., & Chen, D. (2016). Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC. Journal of Hazardous Materials, 320, 435–441.CrossRefGoogle Scholar
  22. Larcher, D., & Tarascon, J. M. (2015). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 7(1), 19–29.CrossRefGoogle Scholar
  23. Li, X., Wang, S., Liu, Y., Jiang, L., Song, B., Li, M., Zeng, G., Tan, X., Cai, X., & Ding, Y. (2017). Adsorption of Cu(II), Pb(II), and Cd(II) ions from acidic aqueous solutions by diethylenetriaminepentaacetic acid-modified magnetic graphene oxide. Journal Chemical Engineering Data, 62(1), 407–416.CrossRefGoogle Scholar
  24. Lin, K. Y. A., & Chang, H. A. (2015). Efficient adsorptive removal of humic acid from water using zeolitic imidazole framework-8 (ZIF-8). Water, Air, & Soil Pollution, 226(2), 10.CrossRefGoogle Scholar
  25. Liu, J. M., Liu, T., Wang, C. C., Yin, X. H., & Xiong, Z. H. (2017). Introduction of amidoxime groups into metal-organic frameworks to synthesize MIL-53 (Al)-AO for enhanced U(VI) sorption. Journal of Molecular Liquids, 242, 531–536.CrossRefGoogle Scholar
  26. Lv, P., Zhou, C., Zhao, Y., Liao, X., & Yang, B. (2017). Modified-epsilon-polylysine-grafted-PEI-β-cyclodextrin supramolecular carrier for gene delivery. Carbohydrate Polymers, 168, 103–111.CrossRefGoogle Scholar
  27. McCombie, C., & Jefferson, M. (2016). Renewable and nuclear electricity: comparison of environmental impacts. Energy Policy, 96, 758–769.CrossRefGoogle Scholar
  28. Nelson, A.W., Knight, A.W., May, D., Eitrheim, E.S., Schultz, M.K. (2015). Naturally-occurring radioactive materials (NORM) associated with unconventional drilling for shale gas. In Hydraulic fracturing: environmental issues (pp. 89–128). American Chemical Society.Google Scholar
  29. Okoshi, M., & Nakayama, S. (2015). Generation and characteristics of radioactive wastes. Radioactive Waste Engineering and Management. Springer Japan, 17–46.Google Scholar
  30. Oskoei, V., Dehghani, M. H., Nazmara, S., Heibati, B., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and sorption. Journal of Molecular Liquids, 213, 374–380.CrossRefGoogle Scholar
  31. Payne, Τ. E., Davis, J. A., & Waite, T. D. (1996). Uranium sorption on ferrihydrite—effects of phosphate and humic acid. Radiochimica Acta, 74(s1), 239–244.CrossRefGoogle Scholar
  32. Prasetyo, E., & Toyoda, K. (2016). Sol-gel synthesis of a humic acid-silica gel composite material as low-cost adsorbent for thorium and uranium removal. Journal of Radioanalytical and Nuclear Chemistry, 310(1), 69–80.CrossRefGoogle Scholar
  33. Roosen, J., & Binnemans, K. (2014). Adsorption and chromatographic separation of rare earths with EDTA-and DTPA-functionalized chitosan biopolymers. Journal of Materials Chemistry A, 2(5), 1530–1540.CrossRefGoogle Scholar
  34. Roosen, J., Van Roosendael, S., Borra, C. R., Gerven, T. V., Mullens, S., & Binnemans, K. (2016). Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan—silica hybrid materials. Green Chemistry, 18(7), 2005–2013.CrossRefGoogle Scholar
  35. Saleh, T. A., Tuzen, M., & Sarı, A. (2017). Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chemical Engineering Research and Design, 117, 218–227.CrossRefGoogle Scholar
  36. Sehaqui, H., de Larraya, U. P., Tingaut, P., & Zimmermann, T. (2015). Humic acid sorption onto cationic cellulose nanofibers for bioinspired removal of copper (II) and a positively charged dye. Soft Matter, 11(26), 5294–5300.CrossRefGoogle Scholar
  37. Song, W., Shao, D., Lu, S., & Wang, X. (2014). Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Science China Chemistry, 57(9), 1291–1299.CrossRefGoogle Scholar
  38. Tan, L., Liu, Q., Jing, X., Liu, J., Song, D., Hu, S., Liu, L. H., & Wang, J. (2015a). Removal of uranium (VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chemical Engineering Journal, 273, 307–315.CrossRefGoogle Scholar
  39. Tan, L., Wang, Y., Liu, Q., Wang, J., Jing, X., Liu, L., Liu, J. Y., & Song, D. (2015b). Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chemical Engineering Journal, 259, 752–760.CrossRefGoogle Scholar
  40. Tarkovskaya, I. A., & Stavitskaya, S. S. (1998). Effects of the reaction medium on the chemical nature of the surface of carbon catalysts during esterification, ester hydrolysis, and hydrogen peroxide decomposition. Theoretical and Experimental Chemistry, 34(1), 44–48.CrossRefGoogle Scholar
  41. Wang, J., Bi, L., Ji, Y., Ma, H., & Yin, X. (2014). Removal of humic acid from aqueous solution by magnetically separable polyaniline: sorption behavior and mechanism. Journal of Colloid and Interface Science, 430, 140–146.CrossRefGoogle Scholar
  42. Xie, C. Y., Jing, S. P., Wang, Y., Lin, X., Bao, H. L., Guan, C. Z., Jin, C., & Wang, J. Q. (2017). Sorption of uranium (VI) onto amidoxime-functionalized ultra-high molecular weight polyethylene fibers from aqueous solution. Nuclear Science and Techniques, 28(7), 94.CrossRefGoogle Scholar
  43. Xu, C., Wang, J., Yang, T., Chen, X., Liu, X., & Ding, X. (2015). Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydrate Polymers, 121, 79–85.CrossRefGoogle Scholar
  44. Yakouta, S. M. E., Salemc, N. A., & Abdeltawabd, A. A. (2017). Equilibrium and thermodynamics for sorption of uranium onto potassium hydroxide oxidized carbon. Desalination and Water Treatment, 72, 335–342.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ying Dai
    • 1
    • 2
  • Riwen Lv
    • 1
    • 2
  • Dejuan Huang
    • 1
    • 2
  • Qinqin Tao
    • 3
    Email author
  1. 1.State Key Laboratory Breeding Base of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangChina
  2. 2.School of Chemistry, Biological and Materials SciencesEast China University of TechnologyNanchangChina
  3. 3.School of Civil Engineer and ArchitectureEast China Jiaotong UniversityNanchangChina

Personalised recommendations