Advertisement

Novel Magnetic Nanocarbon and Its Adsorption of Hg and Pb from Water

  • Kai Guo
  • Steven L. Larson
  • John H. Ballard
  • Zikri Arslan
  • Rong Zhang
  • Yong Ran
  • Yi Su
  • Fengxiang X. Han
Article

Abstract

Lead and mercury are two of the most toxic heavy metals in environments. Mesosilicate-templated magnetic nanocarbons with ascorbic acid as carbon precursor were developed through nanocasting processes. The nanocarbon showed effective magnetic separation and the maximum adsorption capacity of 80.6 and 66.3 mg/g for Hg and Pb, respectively. Langmuir model well described adsorption processes of both Hg and Pb from water. Magnetic nanocarbon could be easily separated and incinerated, reducing the volume requiring the disposal. This study indicates that mesosilicate-templated nanocarbons with easy disposal potentials may be good candidates for cleansing Hg and Pb from contaminated water.

Keywords

Adsorption Mesoporous Nanocarbon Silicate Radionuclide Heavy metals 

Notes

Acknowledgements

This study was supported by the US Army Environmental Quality Technology (EQT) Program, the US Army Engineer Research and Development Center (Cooperative Agreement W912HZ-16-2-0021), the US Nuclear Regulatory Commission (NRC-HQ-84-15-G-0042 and NRC-HQ-12-G-38-0038), and the US Department of Commerce (NOAA) (NA11SEC4810001-003499).

References

  1. Arshadi, M. (2015). Manganese chloride nanoparticles: a practical adsorbent for the sequestration of Hg(II) ions from aqueous solution. Chemical Engineering Journal, 259, 170–182.CrossRefGoogle Scholar
  2. Baikousi, M., Daikopoulos, C., Georgiou, Y., et al. (2013). Novel ordered mesoporous carbon with innate functionalities and superior heavy metal uptake. Journal of Physical Chemistry C, 117, 16961–16971.CrossRefGoogle Scholar
  3. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4, 361–377.CrossRefGoogle Scholar
  4. Baum, R., Bartram, J., & Hrudey, S. (2016). The flint water crisis confirms that U.S. drinking water needs improved risk management. Environmental Science & Technology, 50, 5436–5437.CrossRefGoogle Scholar
  5. Bazargan-Lari, R., Zafarani, H. R., Bahrololoom, M. E., & Nemati, A. (2014). Removal of Cu(II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 45, 1642–1648.CrossRefGoogle Scholar
  6. Boening, D. W. (1999). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40, 1335–1351.CrossRefGoogle Scholar
  7. Guo, K., Han, F. X., Arslan, Z., et al. (2015). Adsorption of Cs from water on surface modified MCM-41 mesosilicate. Water Air Soil Pollution, 226, 288–297.CrossRefGoogle Scholar
  8. EPA (2000) America’s Children and the Environment—A First View of Available Measures.Google Scholar
  9. Ezzeddine, Z., Batonneau-Gener, I., Pouilloux, Y., et al. (2015). Divalent heavy metals adsorption onto different types of EDTA-modified mesoporous materials: effectiveness and complexation rate. Microporous and Mesoporous Materials, 212, 125–136.CrossRefGoogle Scholar
  10. Han, F. X., Banin, A., Su, Y., et al. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89, 497–504.CrossRefGoogle Scholar
  11. Han, F. X., Su, Y., Monts, D. L., et al. (2003). Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften, 90, 395–401.CrossRefGoogle Scholar
  12. Ho, Y., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  13. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakademiens Handl, 24, 1898.Google Scholar
  14. Lu, A., Kiefer, A., Schmidt, W., & Ferdi, S. (2004). Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chermistry Mater, 16, 100–103.CrossRefGoogle Scholar
  15. Lu, A. H., Schmidt, W., Spliethoff, B. & Schuth, F. (2003). Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume. Advanced Materials, 15, 1602–1606.CrossRefGoogle Scholar
  16. Luo, S., Xu, X., Zhou, G., et al. (2014). Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. Journal of Hazardous Materials, 274, 145–155.CrossRefGoogle Scholar
  17. Mahdavi, M., Bin, A. M., Haron, M. J., et al. (2013). Fabrication and characterization of SiO2/(3-aminopropyl)triethoxysilane-coated magnetite nanoparticles for lead(II) removal from aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 23, 599–607.CrossRefGoogle Scholar
  18. Meitei, M. D., & Prasad, M. N. V. (2014). Adsorption of Cu(II), Mn(II) and Zn(II) by Spirodela polyrhiza (L.) Schleiden: equilibrium, kinetic and thermodynamic studies. Ecological Engineering, 71, 308–317.CrossRefGoogle Scholar
  19. Moghaddam, H. K., & Pakizeh, M. (2015). Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. Journal of Industrial and Engineering Chemistry, 21, 221–229.CrossRefGoogle Scholar
  20. Norouzian R, Lakouraj MM (2015) Preparation and heavy metal ion adsorption behavior of novel supermagnetic nanocomposite based on thiacalix [4] arene and polyaniline: conductivity, isotherm and kinetic study. 203:135–148.Google Scholar
  21. O’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresource Technology, 99, 6709–6724.CrossRefGoogle Scholar
  22. Qi, G., Lei, X., Li, L., et al. (2015). Preparation and evaluation of a mesoporous calcium-silicate material (MCSM) from coal fly ash for removal of Co(II) from wastewater. Chemical Engineering Journal, 279, 777–787.CrossRefGoogle Scholar
  23. Tang, L., Yang, G.-D., Zeng, G.-M., et al. (2014). Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 239, 114–122.CrossRefGoogle Scholar
  24. Wang, F., Liang, L., Shi, L., et al. (2015). CO2 assisted synthesis of highly dispersed Co3O4 nanoparticles on mesoporous carbon for lithium ion battery. Journal of Alloys and Compounds, 633, 65–70.CrossRefGoogle Scholar
  25. Webi, T. W., & Chakravort, R. K. (1974). Pore and solid diffusion models for fixed-bed adsorbers. AICHE Journal, 20, 228–238.CrossRefGoogle Scholar
  26. Xia, Y., & Mokaya, R. (2004). Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method. Advanced Materials, 16, 1553–1558.CrossRefGoogle Scholar
  27. Xu, D., Tan, X., Chen, C., & Wang, X. (2008). Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 154, 407–416.CrossRefGoogle Scholar
  28. Yang Z, Lu Y, Yang Z (2009) Mesoporous materials: tunable structure, morphology and composition. Chemical Communications 2270.Google Scholar
  29. Yargıç, A. Ş., Şahin, R. Z. Y., Özbay, N., & Önal, E. (2015). Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. Journal of Cleaner Production, 88, 152–159.CrossRefGoogle Scholar
  30. Yglesias M (2016) It’s not just flint—every major American city has hazardous amounts of lead hurting kids. In: Vox. http://www.vox.com/2016/1/19/10790534/lead-soil. Accessed 19 Jan 2016.
  31. Yoon, S. B., Kim, J. Y., Yu, J.-S., et al. (2005). Fabrication and characterization of mesostructured silica, HUM-1, and its ordered mesoporous carbon replica. Industrial and Engineering Chemistry Research, 44, 4316–4322.CrossRefGoogle Scholar
  32. Yu, S., Wang, X., Tan, X., & Wang, X. (2015). Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review. Inorganic Chemistry Frontiers, 2, 593–612.CrossRefGoogle Scholar
  33. Zhang, P., Gong, J.-L., Zeng, G.-M., et al. (2017). Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chemical Engineering Journal.  https://doi.org/10.1016/j.cej.2017.04.068.
  34. Zhao, F., Repo, E., Yin, D., et al. (2015). EDTA-cross-linked β-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environmental Science & Technology, 49, 10570–10580.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kai Guo
    • 1
  • Steven L. Larson
    • 2
  • John H. Ballard
    • 2
  • Zikri Arslan
    • 1
  • Rong Zhang
    • 1
  • Yong Ran
    • 3
  • Yi Su
    • 4
  • Fengxiang X. Han
    • 1
  1. 1.Department of Chemistry and BiochemistryJackson State UniversityJacksonUSA
  2. 2.US Army Engineer Research and Development CenterVicksburgUSA
  3. 3.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouPeople’s Republic of China
  4. 4.School of Science and Computer EngineeringUniversity of Houston—Clear LakeHoustonUSA

Personalised recommendations