Advertisement

Copper Toxicity on Photosynthetic Responses and Root Morphology of Hymenaea courbaril L. (Caesalpinioideae)

  • Daniele Maria Marques
  • Valdir Veroneze Júnior
  • Adriano Bortolotti da Silva
  • José Ricardo Mantovani
  • Paulo César Magalhães
  • Thiago Corrêa de Souza
Article
  • 161 Downloads

Abstract

Copper (Cu) is a micronutrient essential for plant development. However, in excess, it is toxic to plants and may cause various physiological and morphological changes. The study of the growth of plants exposed to excess Cu is important for the development of phytoremediation programs and for understanding the mechanisms involved in the tolerance of this metal. In this context, the objective of this research was to evaluate the effect of excess copper on photosynthetic responses and root morphology of Hymenaea courbaril L. Biometric measurements, gas exchange, root morphology, and Cu content in tissues and indices (TI and TF) were assessed, involving metal content and biomass. Up to a concentration of 200 mg kg−1, Cu favored growth, gas exchange, and root morphology of the plants under study. At a higher concentration (800 mg kg−1) in the soil, it affected plant growth and caused a decrease in photosynthetic rate. Biochemical limitations in photosynthesis were observed, as well as lower maximum net photosynthetic rate (Amax), respiration rate in the dark (Rd), light compensation point (LCP), light saturation point (LSP), and apparent quantum yield (α), when exposed to excess Cu. Root length, surface area, mean diameter, root volume, dry biomass, and specific root length decreased with high Cu concentrations in the soil. Cu was accumulated in the roots as a mechanism of tolerance to the excess of this metal in order to preserve the most metabolically active tissues present in the leaves. At a concentration of 800 mg kg−1, copper also caused inhibition of the root system. Plants of H. courbaril showed tolerance to excess Cu in the soil and can be indicated for the recovery of areas contaminated with this metal.

Keywords

Heavy metal Gas exchange Specific root length Root anatomy Phytoremediation Copper tolerance WinRHIZO 

Notes

Acknowledgements

This paper is dedicated to Prof. Dr. Marcelo Polo, Federal University of Alfenas, Alfenas, MG, Brazil, for the long-term merits of his studies on plant ecophysiology.

References

  1. Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M. K., & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22(11), 8148–8162.CrossRefGoogle Scholar
  2. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881.CrossRefGoogle Scholar
  3. Baccio, D., Tognetti, R., Minnocci, A., & Sebastiani, L. (2009). Responses of the Populus x euramericana clone I-214 to excess zinc: carbon assimilation, structural modifications, metal distribution and cellular localization. Environmental and Experimental Botany, 67(1), 153–163.CrossRefGoogle Scholar
  4. Batool, R., Hameed, M., Ashraf, M., Ahmad, M. S. A., & Fatima, S. (2015). Physio-anatomical responses of plants to heavy metals. In: M. Öztürk, M. Ashraf, A. Aksoy, M.S.A. Ahmad (Eds.) Phytoremediation for green energy (pp. 79–96). Netherlands: Springer.Google Scholar
  5. Bochicchio, R., Sofo, A., Terzano, R., Gattullo, C. E., Amato, M., & Scopa, A. (2015). Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: a new screening technique for studying plant response to metals. Plant Physiology and Biochemistry, 91, 20–27.CrossRefGoogle Scholar
  6. Bouma, T. J., Nielsen, K. L., Van Hal, J., & Koutstaal, B. (2001). Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 15(3), 360–369.CrossRefGoogle Scholar
  7. Cai, S., Xiong, Z., Li, L., Li, M., Zhang, L., Liu, C., & Xu, Z. (2014). Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis. Ecotoxicology, 23(1), 76–91.CrossRefGoogle Scholar
  8. Cambrollé, J., Mancilla-Leytón, J. M., Muñoz-Vallés, S., Figueroa-Luque, E., Luque, T., & Figueroa, M. E. (2013). Effects of copper sulfate on growth and physiological responses of Limoniastrum monopetalum. Environmental Science and Pollution Research, 20(12), 8839–8847.CrossRefGoogle Scholar
  9. Cambrollé, J., García, J. L., Figueroa, M. E., & Cantos, M. (2015). Evaluating wild grapevine tolerance to copper toxicity. Chemosphere, 120, 171–178.CrossRefGoogle Scholar
  10. Carmo, C. A. F. S., Araújo, W. S., Bernardi, A. C. C. & Saldanha, M. F. C. (2000) Métodos de análise de tecidos vegetais utilizados na Embrapa Solos. Embrapa Solos, Rio de Janeiro. http://www.infoteca.cnptia.embrapa.br/bitstream/doc/337672/1/Metododeanalisedetecido.pdf. (in portuguese).
  11. Colzi, I., Pignattelli, S., Giorni, E., Papini, A., & Gonnelli, C. (2015). Linking root traits to copper exclusion mechanisms in Silene paradoxa L.(Caryophyllaceae). Plant and Soil, 390(1–2), 1–15.CrossRefGoogle Scholar
  12. DalCorso, G., Manara, A., Piasentin, S., & Furini, A. (2014). Nutrient metal elements in plants. Metallomics, 6(10), 1770–1788.CrossRefGoogle Scholar
  13. Ent, A. V. D., Baker, A. J., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362(1–2), 319–334.Google Scholar
  14. Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, Á., Ördög, A., Szepesi, Á., Gémes, K., Laskay, G., Erdei, L., & Kolbert, Z. (2013). Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicology and Environmental Safety, 94, 179–189.CrossRefGoogle Scholar
  15. Freitas, T. A., França, M. G. C., de Almeida, A. A. F., de Oliveira, S. J. R., de Jesus, R. M., Souza, V. L., Silva, J. V. S., & Mangabeira, P. A. (2015). Morphology, ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.) TD Penn. Environmental Science and Pollution Research, 22(20), 15479–15494.CrossRefGoogle Scholar
  16. Fu, L., Chen, C., Wang, B., Zhou, X., Li, S., Guo, P., Shen, Z., Wang, G., & Chen, Y. (2015). Differences in copper absorption and accumulation between copper-exclusion and copper-enrichment plants: a comparison of structure and physiological responses. PLoS One, 10(7), e0133424.CrossRefGoogle Scholar
  17. Gautam, S., Anjani, K., & Srivastava, N. (2016). In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiology and Molecular Biology of Plants, 22(1), 121–129.CrossRefGoogle Scholar
  18. Imada, S., Yamanaka, N., & Tamai, S. (2008). Water table depth affects Populus alba fine root growth and whole plant biomass. Functional Ecology, 22(6), 1018–1026.CrossRefGoogle Scholar
  19. Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). London: CRC Press.Google Scholar
  20. Küpper, H., & Andresen, E. (2016). Mechanisms of metal toxicity in plants. Metallomics, 8, 269–285.CrossRefGoogle Scholar
  21. Lequeux, H., Hermans, C., Lutts, S., & Verbruggen, N. (2010). Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 48(8), 673–682.CrossRefGoogle Scholar
  22. Lin, C. C., Chen, L. M., & Liu, Z. H. (2005). Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Science, 168(3), 855–861.CrossRefGoogle Scholar
  23. Magalhães, P. C., De Souza, T. C., Cantão, F. R. D. O., & Padilha, F. A. (2012). Root morphology of maize lines with contrasting drought resistance under three toxic levels of aluminum. Brazilian Journal of Maize and Sorghum, 11(1), 35–48.Google Scholar
  24. Marco, R., Silva, R. F., Andreazza, R., Ros, C. O., Scheid, D. L., & Bertollo, G. M. (2016). Copper phytoaccumulation and tolerance by seedlings of native Brazilian trees. Environmental Engineering Science, 33(3), 176–184.CrossRefGoogle Scholar
  25. Mateos-Naranjo, E., Andrades-Moreno, L., Cambrollé, J., & Perez-Martin, A. (2013). Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: ecotoxicological implications. Ecotoxicology and Environmental Safety, 90, 136–142.CrossRefGoogle Scholar
  26. Nunes, C., Araújo, S. S., Silva, J. M., Fevereiro, P., & Silva, A. B. (2009). Photosynthesis light curves: a method for screening water deficit resistance in the model legume Medicago truncatula. Annals of Applied Biology, 155(3), 321–332.CrossRefGoogle Scholar
  27. Pinheiro, D. G., Streck, N. A., Richter, G. L., Langner, J. A., Winck, J. E. M., Uhlmann, L. O., & Zanon, A. J. (2014). Soil water threshold for transpiration and leaf growth in cassava plants in two water deficit periods. Revista Brasileira de Ciência do Solo, 38(6), 1740–1749.CrossRefGoogle Scholar
  28. Shi, X., Zhang, X., Chen, G., Chen, Y., Wang, L., & Shan, X. (2011). Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. Journal of Environmental Sciences, 23(2), 266–274.CrossRefGoogle Scholar
  29. Silva, N. D. G., Cholewa, E., & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.) Journal of Experimental Botany, 63(16), 5957–5966.CrossRefGoogle Scholar
  30. Silva, R. F. D., Ros, C. O. D., Scheid, D. L., Grolli, A. L., Marco, R. D., & Missio, E. L. (2015). Copper translocation and tolerance in seedlings of tree species grown in contaminated soil. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(11), 1093–1099.CrossRefGoogle Scholar
  31. Souza, T. D., Castro, E. D., Pereira, F. J., Parentoni, S. N., & Magalhães, P. C. (2009). Morpho-anatomical characterization of root in recurrent selection cycles for flood tolerance of maize (Zea mays L.) Plant Soil and Environment, 55(11), 504–510.CrossRefGoogle Scholar
  32. Souza, T. C. D., Magalhães, P. C., Pereira, F. J., Castro, E. M. D., Silva Junior, J. M. D., & Parentoni, S. N. (2010). Leaf plasticity in successive selection cycles of ‘Saracura’ maize in response to periodic soil flooding. Pesquisa Agropecuária Brasileira, 45(1), 16–24.CrossRefGoogle Scholar
  33. Souza, T. C., De Castro, E. M., Magalhães, P. C., Alves, E. T., & Pereira, F. J. (2012a). Early characterization of maize plants in selection cycles under soil flooding. Plant Breeding, 131(4), 493–501.CrossRefGoogle Scholar
  34. Souza, S. C. R., de Andrade, S. A. L., de Souza, L. A., & Schiavinato, M. A. (2012b). Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. Journal of Environmental Management, 110, 299–307.CrossRefGoogle Scholar
  35. Souza, V. L., Almeida, A. A. F., Souza, J. S., Mangabeira, P. A. O., Jesus, R. M., Pirovani, C. P., Ahnert, D., Baligar, V. C., & Loguercio, L. L. (2014). Altered physiology, cell structure, and gene expression of Theobroma cacao seedlings subjected to Cu toxicity. Environmental Science and Pollution Research, 21, 1217–1230.CrossRefGoogle Scholar
  36. Wahl, S., & Ryser, P. (2000). Root tissue structure is linked to ecological strategies of grasses. New Phytologist, 148(3), 459–471.CrossRefGoogle Scholar
  37. Wang, Q. Y., Liu, J. S., & Hu, B. (2016). Integration of copper subcellular distribution and chemical forms to understand copper toxicity in apple trees. Environmental and Experimental Botany, 123, 125–131.CrossRefGoogle Scholar
  38. Yruela, I. (2013). Transition metals in plant photosynthesis. Metallomics, 5(9), 1090–1109.CrossRefGoogle Scholar
  39. Zhang, L., Zhao, J., Duan, M., Zhang, H., Jiang, J., & Yu, R. (2013). Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay. Analytical Chemistry, 85(8), 3797–3801.CrossRefGoogle Scholar
  40. Zhang, X., Zhang, X., Gao, B., Li, Z., Xia, H., Li, H., & Li, J. (2014). Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum× P. purpureum). Biomass and Bioenergy, 67, 179–187.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daniele Maria Marques
    • 1
  • Valdir Veroneze Júnior
    • 1
  • Adriano Bortolotti da Silva
    • 2
  • José Ricardo Mantovani
    • 2
  • Paulo César Magalhães
    • 3
  • Thiago Corrêa de Souza
    • 1
  1. 1.Institute of Nature Sciences—ICNFederal University of Alfenas—UNIFAL-MGAlfenasBrazil
  2. 2.Section of Agricultural SciencesUniversity José do Rosário Vellano—UNIFENASAlfenasBrazil
  3. 3.Maize and Sorghum National Research CenterSete LagoasBrazil

Personalised recommendations