Greatly Improved Oil-in-Water Emulsion Separation Properties of Graphene Oxide Membrane upon Compositing with Halloysite Nanotubes

  • Yao Zhu
  • Pengpeng Chen
  • Wangyan Nie
  • Yifeng Zhou


Graphene oxide (GO)-based membranes provide an encouraging opportunity for oil-in-water emulsion separation with high separation efficiency. In this work, novel hierarchically structured membrane consisting of GO and halloysite nanotubes (HNTs) was successfully fabricated by vacuum-assisted filtration method. XRD and TEM measurements showed the successful intercalation of HNTs into the interlayers of GO nanosheets. With the incorporation of the one-dimensional hollow tubular structure halloysite nanotubes, GO-HNTs(GOH) membrane possessed combined advantages of high oil rejection rate and excellent fouling resistance properties. The permeate fluxes increased from 286.6 L/(m2·h) for GO membrane to 716 L/(m2·h) for GOH membrane. The results indicate that the GOH membranes have great potential applications in water purification and wastewater treatment.


Graphene oxide Halloysite nanotubes Oil/water separation Intercalation 



This work was financed by National Natural Science Foundation of China (Grant No. 5140003), Anhui Provincial Natural Science Foundation (1508085QE105), Scientific Research Fund of Anhui Provincial Education Department (KJ2016A791, KJ2017A030), Anhui Province Institute of High Performance Rubber Materials and Products, and The 211 Project of Anhui University.


  1. Baker, R. W. (2012). Membrane technology and applications (Vol. 6, pp. 3771–3777). Hoboken: Wiley.CrossRefGoogle Scholar
  2. Chen, S., Zhu, J., Wu, X., Han, Q., & Wang, X. (2010). Graphene oxide--MnO2 nanocomposites for supercapacitors. ACS Nano, 4, 2822–2830.CrossRefGoogle Scholar
  3. Chen, X., Qiu, M., Ding, H., Fu, K., & Fan, Y. (2016). A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale, 8, 5696–5705.CrossRefGoogle Scholar
  4. Darvishzadeh, T., Tarabara, V. V., & Priezjev, N. V. (2013). Oil droplet behavior at a pore entrance in the presence of crossflow: Implications for microfiltration of oil–water dispersions. Journal of Membrane Science, 447, 442–451.CrossRefGoogle Scholar
  5. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460.CrossRefGoogle Scholar
  6. Fan, J., Duan, J., Yu, Z., Wu, D., & Zhu, H. (2016). Oleophobicity of chitosan/Micron-alumina-coated stainless steel mesh for oil/water separation. Water, Air, & Soil Pollution, 227, 163.CrossRefGoogle Scholar
  7. Gao, P., Liu, Z., Sun, D. D., & Ng, W. J. (2014). The efficient separation of surfactant-stabilized oil–water emulsions with a flexible and superhydrophilic graphene–TiO2 composite membrane. Journal of Materials Chemistry A, 2, 14082–14088.CrossRefGoogle Scholar
  8. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.CrossRefGoogle Scholar
  9. Gopal, A. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. Journal of Nanomedicine & Nanotechnology, 6, 369–375.Google Scholar
  10. Han, Y., Jiang, Y., & Gao, C. (2015). High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 7, 8147–8155.CrossRefGoogle Scholar
  11. Hemmati, M., Rekabdar, F., Gheshlaghi, A., Salahi, A., & Mohammadi, T. (2012). Effects of air sparging, cross flow velocity and pressure on permeation flux enhancement in industrial oily wastewater treatment using microfiltration. Desalination & Water Treatment, 39, 33–40.CrossRefGoogle Scholar
  12. Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., Chang, Q., & Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200–204.CrossRefGoogle Scholar
  13. Huang, Y., Li, H., Wang, L., Qiao, Y., Tang, C., Jung, C., Yoon, Y., Li, S., & Yu, M. (2015). Ultrafiltration membranes with structure-optimized Graphene-oxide coatings for antifouling oil/water separation. Advanced Materials Interfaces, 2, 1400133.Google Scholar
  14. Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339–1339.CrossRefGoogle Scholar
  15. Jin, J., Gao, J. S., Qin, H., & Liu, P. (2015). SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. Journal of Materials Chemistry A, 3, 6649–6654.CrossRefGoogle Scholar
  16. Ju, H., Mccloskey, B. D., Sagle, A. C., Wu, Y. H., Kusuma, V. A., & Freeman, B. D. (2008). Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation. Journal of Membrane Science, 307, 260–267.CrossRefGoogle Scholar
  17. Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., & Huang, J. (2010). Graphene oxide sheets at interfaces. Journal of the American Chemical Society, 132, 8180–8186.CrossRefGoogle Scholar
  18. Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38–49.CrossRefGoogle Scholar
  19. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388.CrossRefGoogle Scholar
  20. Levis, S. R., & Deasy, P. B. (2002). Characterisation of halloysite for use as a microtubular drug delivery system. International Journal of Pharmaceutics, 243, 125–134.CrossRefGoogle Scholar
  21. Li, H., Song, Z., Zhang, X., Huang, Y., Li, S., Mao, Y., Ploehn, H. J., Bao, Y., & Yu, M. (2013). Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 342, 95–98.CrossRefGoogle Scholar
  22. Li, G., Wang, X., Tao, L., Li, Y., Quan, K., Wei, Y., Chi, L., & Yuan, Q. (2015). Cross-linked graphene membrane for high-performance organics separation of emulsions. Journal of Membrane Science, 495, 439–444.CrossRefGoogle Scholar
  23. Li, F., Yu, Z., Shi, H., Yang, Q., Chen, Q., Pan, Y., Zeng, G., & Yan, L. (2017). A mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation. Chemical Engineering Journal, 322, 33–45.CrossRefGoogle Scholar
  24. Liu, R., Zhang, B., Mei, D., Zhang, H., & Liu, J. (2011). Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination, 268, 111–116.CrossRefGoogle Scholar
  25. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4, 4806–4814.CrossRefGoogle Scholar
  26. Mi, B. (2014). Graphene oxide membranes for ionic and molecular sieving. Science, 343, 740–742.CrossRefGoogle Scholar
  27. Motta, A., Borges, C., Esquerre, K., & Kiperstok, A. (2014). Oil produced water treatment for oil removal by an integration of coalescer bed and microfiltration membrane processes. Journal of Membrane Science, 469, 371–378.CrossRefGoogle Scholar
  28. O'Hern, S. C., Boutilier, M. S., Idrobo, J. C., Song, Y., Kong, J., Laoui, T., Atieh, M., & Karnik, R. (2014). Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 14, 1234–1241.CrossRefGoogle Scholar
  29. Padaki, M., Murali, R. S., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A., Hilal, N., & Ismail, A. F. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 197–207.CrossRefGoogle Scholar
  30. Rein, D. M., Khalfin, R., & Cohen, Y. (2012). Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. Journal of Colloid & Interface Science, 386, 456–463.CrossRefGoogle Scholar
  31. Safarpour, M., Khataee, A., & Vatanpour, V. (2015). Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Separation & Purification Technology, 140, 32–42.CrossRefGoogle Scholar
  32. Tummons, E. N., Tarabara, V. V., Chew, J. W., & Fane, A. G. (2016). Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil–water emulsions. Journal of Membrane Science, 500, 211–224.CrossRefGoogle Scholar
  33. Wang, K., Lin, X., Jiang, G., Liu, J. Z., Jiang, L., Doherty, C. M., Hill, A. J., Xu, T., & Wang, H. (2014). Slow hydrophobic hydration induced polymer ultrafiltration membranes with high water flux. Journal of Membrane Science, 471, 27–34.CrossRefGoogle Scholar
  34. Yang, L., Wang, Z., Li, X., Yang, L., Lu, C., & Zhao, S. (2016). Hydrophobic modification of Platanus fruit fibers as natural hollow fibrous sorbents for oil spill cleanup. Water Air & Soil Pollution, 227, 346.CrossRefGoogle Scholar
  35. Yuan, P., Southon, P. D., Liu, Z., Green, M. E. R., Hook, J. M., Antill, S. J., & Kepert, C. J. (2008). Functionalization of Halloysite clay nanotubes by grafting with γ-Aminopropyltriethoxysilane. Journal of Physical Chemistry C, 112, 15742–15751.CrossRefGoogle Scholar
  36. Zhang, W., Shi, Z., Zhang, F., Liu, X., Jin, J., & Jiang, L. (2013). Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Advanced Materials, 25, 2071–2076.CrossRefGoogle Scholar
  37. Zhang, W., Zhu, Y., Liu, X., Wang, D., Li, J., Jiang, L., & Jin, J. (2014). Salt-induced fabrication of Superhydrophilic and underwater Superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angewandte Chemie, 53, 856–860.CrossRefGoogle Scholar
  38. Zhang, J., Xue, Q., Pan, X., Jin, Y., Lu, W., Ding, D., & Guo, Q. (2017). Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chemical Engineering Journal, 307, 643–649.CrossRefGoogle Scholar
  39. Zhao, X., Su, Y., Liu, Y., Li, Y., & Jiang, Z. (2016a). Free-standing Graphene oxide-Palygorskite Nanohybrid membrane for oil/water separation. ACS Applied Materials & Interfaces, 8, 8247–8256.CrossRefGoogle Scholar
  40. Zhao, Y., Li, C., Fan, X., Wang, J., Yuan, G., Song, X., Chen, J., & Li, Z. (2016b). Study on the separation performance of the multi-channel reduced graphene oxide membranes. Applied Surface Science, 384, 279–286.CrossRefGoogle Scholar
  41. Zhu, Z., Zhang, B., Chen, B., Cai, Q., & Lin, W. (2016). Biosurfactant production by marine-originated bacteria bacillus Subtilis and its application for crude oil removal. Water Air & Soil Pollution, 227, 328–328.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Environment-friendly Polymer MaterialsAnhui UniversityHefeiChina
  2. 2.School of Chemistry and Chemical EngineeringAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations