Ultrafiltration of Aqueous PVA Using Spinning Basket Membrane Module

Article
  • 51 Downloads

Abstract

The performance of spinning basket membrane (SBM) module was tested for the separation of polyvinyl alcohol (PVA) from wastewater. The SBM performance was examined using 50 kDa polyethersulfone ultrafiltration membrane under different parametric conditions. Also, the effects of rotational speed and transmembrane pressure on permeate flux and PVA rejection were investigated. The rotational speed played a significant role in decreasing membrane fouling by reducing the particle deposition on the membrane surface due to enhanced turbulence and shear force. Also, the in-built hydrodynamic cleaning facility of the SBM module allowed easy cleaning of the membrane. The steady-state value of percentage rejection of PVA was above 90% when the steady-state permeate flux value was above 54% of its initial value. The results suggested that spinning basket membrane module was efficient as well as economical for the separation of PVA from aqueous solution.

Keywords

Polyvinyl alcohol (PVA) Spinning basket membrane module Ultrafiltration Wastewater treatment 

Nomenclature

Greek Symbol

π

Osmotic pressure.

μ

Viscosity.

ω0

Rotational speed.

Symbols

∆P

Transmembrane pressure difference.

C

Concentration in g L−1.

Co

Initial PVA concentration in mg L−1.

Cp

PVA concentration at permeate side in mg L−1.

J

Permeate flux.

R

Universal gas constant.

Rg

Resistance of gel layer.

Rm

Resistance of membrane.

T

Temperature in K.

t

Time in min.

V

Volume of the solution in L.

Abbreviations

BOD

Biological oxygen demand

COD

Chemical oxygen demand

DBD

Dielectric barrier discharge

DSE

Dynamic shear enhanced

EDTA

Ethylene diamine tetra acetic acid

PES

Polyethersulfone

PVA

Polyvinyl alcohol

SBM

Spinning basket membrane

TMP

Transmembrane pressure

VSEP

Vibratory shear enhanced process

Notes

Acknowledgements

Authors acknowledge the analytical facilities provided by Central Instruments Facility (CIF), IIT Guwahati.

Supplementary material

11270_2018_3755_MOESM1_ESM.docx (216 kb)
ESM 1 (DOCX 216 kb)

References

  1. Bhattacharjee, C., & Bhattacharya, P. K. (2006). Ultrafiltration of black liquor using rotating disk membrane module. Separation and Purification Technology, 49(3), 281–290.  https://doi.org/10.1016/j.seppur.2005.10.011.CrossRefGoogle Scholar
  2. Buckley, C. A., Townsend, R. B., & Groves, G. R. (1982). The performance of an ultrafiltration pilot-plant for the closed loop recycling of textile desizing effluents. Water Science and Technology, 14(6–7), 705–713.Google Scholar
  3. Feitkenhauer, H. (2003). Anaerobic digestion of desizing wastewater: Influence of pretreatment and anionic surfactant on degradation and intermediate accumulation. Enzyme and Microbial Technology, 33(2–3), 250–258.  https://doi.org/10.1016/S0141-0229(03)00125-X.CrossRefGoogle Scholar
  4. Finlev, J. H. (1961). Spectrophotometric determination of polyvinyl alcohol in paper coatings. Analytical Chemistry, 33(13), 1925.  https://doi.org/10.1021/ac50154a044.CrossRefGoogle Scholar
  5. Guo, W., Ngo, H. H., & Li, J. (2012). A mini-review on membrane fouling. Bioresource Technology, 122, 27–34.  https://doi.org/10.1016/j.biortech.2012.04.089.CrossRefGoogle Scholar
  6. Jaffrin, M. Y. (2008). Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating membranes and vibrating systems. Journal of Membrane Science, 324(1–2), 7–25.  https://doi.org/10.1016/j.memsci.2008.06.050.CrossRefGoogle Scholar
  7. Jaffrin, M. Y., Ding, L. H., Akoum, O., & Brou, A. (2004). A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems. Journal of Membrane Science, 242(1–2), 155–167.  https://doi.org/10.1016/j.memsci.2003.07.029.CrossRefGoogle Scholar
  8. Kang, S. F., Liao, C. H., & Chen, M. C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46(6), 923–928.  https://doi.org/10.1016/S0045-6535(01)00159-X.CrossRefGoogle Scholar
  9. Lin, S. H., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050–2056.  https://doi.org/10.1016/S0043-1354(97)00024-9.CrossRefGoogle Scholar
  10. Madaeni, S. S., Mohamamdi, T., & Moghadam, M. K. (2001). Chemical cleaning of reverse osmosis membranes. Desalination, 134(1–3), 77–82.  https://doi.org/10.1016/S0011-9164(01)00117-5.CrossRefGoogle Scholar
  11. Peng, S., Gao, Z., Sun, J., Yao, L., & Qiu, Y. (2009). Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Applied Surface Science, 255(23), 9458–9462.  https://doi.org/10.1016/j.apsusc.2009.07.058.CrossRefGoogle Scholar
  12. Porter, J. J. (1998). Recovery of polyvinyl alcohol and hot water from the textile wastewater using thermally stable membranes. Journal of Membrane Science, 151(1), 45–53.  https://doi.org/10.1016/S0376-7388(98)00236-1.CrossRefGoogle Scholar
  13. Reddy, N., Chen, L., Zhang, Y., & Yang, Y. (2014). Reducing environmental pollution of the textile industry using keratin as alternative sizing agent to poly(vinyl alcohol). Journal of Cleaner Production, 65, 561–567.  https://doi.org/10.1016/j.jclepro.2013.09.046.CrossRefGoogle Scholar
  14. Rongrong, L., Qing, T., & Jihua, C. (2010). Hybrid anaerobic baffled reactor for treatment of desizing wastewater. International Journal of Environmental Science and Technology, 7(1), 111–118.  https://doi.org/10.5897/AJB10.036.CrossRefGoogle Scholar
  15. Rongrong, L., Xujie, L., Qing, T., Bo, Y., & Jihua, C. (2011). The performance evaluation of hybrid anaerobic baffled reactor for treatment of PVA-containing desizing wastewater. Desalination, 271(1–3), 287–294.  https://doi.org/10.1016/j.desal.2010.12.044.CrossRefGoogle Scholar
  16. Saha, S., & Das, C. (2017). Spinning basket membrane ultrafiltration of paper industry waste effluent: Experimental and theoretical aspects. Journal of Environmental Chemical Engineering, 5(5), 4583–4593.  https://doi.org/10.1016/j.jece.2017.08.003.CrossRefGoogle Scholar
  17. Samal, K., Das, C., & Mohanty, K. (2016). Development of hybrid membrane process for Pb bearing wastewater treatment. Journal of Water Process Engineering, 10, 30–38.  https://doi.org/10.1016/j.jwpe.2016.01.013.CrossRefGoogle Scholar
  18. Samal, K., Das, C., & Mohanty, K. (2017). Application of saponin biosurfactant and its recovery in the MEUF process for removal of methyl violet from wastewater. Journal of Environmental Management, 203, 8–16.  https://doi.org/10.1016/j.jenvman.2017.07.073.CrossRefGoogle Scholar
  19. Sarkar, D., Sarkar, A., Roy, A., & Bhattacharjee, C. (2012). Performance characterization and design evaluation of spinning basket membrane (SBM) module using computational fluid dynamics (CFD). Separation and Purification Technology, 94, 23–33.  https://doi.org/10.1016/j.seppur.2012.03.034.CrossRefGoogle Scholar
  20. Sun, W., Chen, L., Zhang, Y., & Wang, J. (2015). Synergistic effect of ozonation and ionizing radiation for PVA decomposition. Journal of Environmental Sciences (China), 34, 63–67.  https://doi.org/10.1016/j.jes.2015.01.020.CrossRefGoogle Scholar
  21. Van Der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W., & Leysen, R. (2003). A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environmental Progress, 22(1), 46–56.  https://doi.org/10.1002/ep.670220116.CrossRefGoogle Scholar
  22. Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276–307.  https://doi.org/10.1016/j.memsci.2014.05.060.CrossRefGoogle Scholar
  23. Zhang, J., Wang, S., Guo, Y., Xu, D., Gong, Y., & Tang, X. (2013). Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: Influence of NaOH on the organic decomposition. Journal of Environmental Sciences (China), 25(8), 1583–1591.  https://doi.org/10.1016/S1001-0742(9)60193-4.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations