Comprehensive Effect of P-Nitrophenol Degradation in the Iron Oxide/Oxalate Suspension

  • Faqi Li
  • Kaili Zhu
  • Bo Liu
  • Nannan Wang
  • Hui Liu
  • Rufen Chen


The degradation and transformation of p-nitrophenol (PNP) was evaluated with as-prepared iron oxides (γ-FeOOH, Fe3O4, and α-Fe2O3) as catalyst. Results showed that α-Fe2O3 exhibited higher catalytic activity than the other two samples for reduction transformation and oxidative degradation of PNP. α-Fe2O3 showed higher surface-bound Fe(II) contents in the presence of oxalic acid and stronger affinity to PNP, leading to an increase in PNP reductive transformation. And α-Fe2O3 could effectively adsorb visible light and hinder the recombination of charge carriers, resulting in higher oxidative degradation activity. p-Aminophenol (PAP), as the main reduction transformation product of PNP, could be removed further by oxidative degradation in the reaction system itself. A possible mechanism was suggested for the comprehensive effect of PNP degradation during the reaction process.


Iron oxide Oxalic acid P-Nitrophenol P-aminophenol Degradation 



This work was supported by the National Natural Science Foundation of China (21477032, 21277040).

Supplementary material

11270_2018_3748_MOESM1_ESM.doc (3.6 mb)
ESM 1 (DOC 3699 kb)


  1. Aarong, B., & Michelle, M. S. (2004). Spectroscopic evidence for Fe(II)–Fe(III) electrontransfer at the iron oxide–water interface. Environmental Science & Technology, 38, 4782–4790.CrossRefGoogle Scholar
  2. Bhatnagar, A., & Jain, A. K. (2005). A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. Journal of Colloid and Interface Science, 281, 49–55.CrossRefGoogle Scholar
  3. Chen, D. W., & Ray, A. K. (1998). Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Research, 32, 3223–3234.CrossRefGoogle Scholar
  4. Chen, R., Chen, H., Wei, Y., & Hou, D. (2007). Photocatalytic oxidation of Fe(OH)2 suspension with visible light irradiation. Journal of Physical Chemistry C, 111, 16453–16459.CrossRefGoogle Scholar
  5. Chen, R., Song, G., & Wei, Y. (2010). Synthesis of variable- sized Fe3O4 nanocrystals by visible light irradiation at room temperature. Journal of Physical Chemistry C, 114, 13409–13413.CrossRefGoogle Scholar
  6. Chu, Y. Y., Qian, Y., Wang, W. J., & Deng, X. L. (2012). Adual-cathode electro-Fenton oxida-tion coupled with anodic oxidation system used for 4-nitrophenol degradeation. Journal of Hazardous Materials, 199–200, 179–180.CrossRefGoogle Scholar
  7. Gangula, A., Podila, R., Ramakrishna, M., Karanam, L., Janardhana, C., & Rao, A. M. (2011). Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from breynia rhamnoides. Langmuir, 27, 15268–15274.CrossRefGoogle Scholar
  8. Guo, P., Tang, L., Tang, J., Zeng, G., Huang, B., Dong, H., Zhang, Y., Zhou, Y., Deng, Y., Ma, L., & Tan, S. (2016). Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. Journal of Colloid and Interface Science, 469, 78–85.CrossRefGoogle Scholar
  9. Heidari, A., Younesi, H., & Mehraban, Z. (2009). Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chemical Engineering Journal, 153, 70–79.CrossRefGoogle Scholar
  10. Ji, Q., Li, J., Xiong, Z., & Lai, B. (2017). Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution. Chemosphere, 172, 10–20.CrossRefGoogle Scholar
  11. Kuroda, K., Ishida, T., & Haruta, M. (2009). Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. Journal of Molecular Catalysis A: Chemical, 298, 7–11.CrossRefGoogle Scholar
  12. Li, F., Wang, X., Li, Y., Liu, C., Zeng, F., Zhang, L., Hao, M., & Ruan, H. (2008). Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide–water interface. Journal of Colloid and Interface Science, 321, 332–341.CrossRefGoogle Scholar
  13. Li, F. B., Li, X. Z., Li, X. M., Liu, T. X., & Dong, J. (2007). Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution. Journal of Colloid and Interface Science, 311, 481–490.CrossRefGoogle Scholar
  14. Li, Z., Meng, G., Chen, R., & Song, X. (2015). Eco-friendly synthesis and photodegradation of hierarchical nanostructures of β-FeOOH and α-Fe2O3. RSC Advances, 5, 88787–88795.CrossRefGoogle Scholar
  15. Lin, Y., Wei, Y., & Sun, Y. (2012). Room-temperature synthesis and photocatalytic properties of lepidocrocite by monowavelength visible light irradiation. Journal of Molecular Catalysis A: Chemical, 353–354, 67–73.CrossRefGoogle Scholar
  16. Liu, P., & Zhao, M. F. (2009). Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Applied Surface Science, 255, 3989–3993.CrossRefGoogle Scholar
  17. Mazellier, P., & Sulzberger, B. (2001). Diuron degradation in irradiated, heterogeneous iron/oxalate systems: the rate-determining step. Environmental Science & Technology, 35, 3314–3320.CrossRefGoogle Scholar
  18. Naka, D., Kim, D., Carbonaro, R. F., & Strathmann, T. J. (2008). Abiotic reduction of nitroaromatic contaminants by iron(II) complexes with organothiol ligands. Environmental Toxicology and Chemistry, 27, 1257–1266.CrossRefGoogle Scholar
  19. Naka, D., Kim, D., & Strathmann, T. J. (2006). Abiotic reduction of nitroaromatic compounds by aqueous iron(II)-catechol complexes. Environmental Science & Technology, 40, 3006–3012.CrossRefGoogle Scholar
  20. Nano, G. V., & Strathmann, T. J. (2008). Application of surface complexation modeling to the reactivity of iron(II) with nitroaromatic and oxime carbamate contaminants in aqueous TiO2 suspensions. Journal of Colloid and Interface Science, 321, 350–359.CrossRefGoogle Scholar
  21. Paipa, C., Mateo, M., Godoy, I., Poblete, E., Toral, M. I., & Vargas, T. (2005). Comparative study of alternative methods for the simultaneous determination of Fe3+ and Fe2+ in leaching solutions and in acid mine drainages. Minerals Engineering, 18, 1116–1119.CrossRefGoogle Scholar
  22. Pedersen, H. D., Postma, D., & Jakobsen, R. (2006). Release of arsenic associated with the reduction and transformation of iron oxides. Geochimica et Cosmochimica Acta, 70, 4116–4129.CrossRefGoogle Scholar
  23. Rene, P. S., Ruth, S., Klaus, L., & Josef, Z. (1990). Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environmental Science & Technology, 24, 1566–1574.CrossRefGoogle Scholar
  24. Roden, E. E. (2004). Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics. Geochimica et Cosmochimica Acta, 68, 3205–3216.CrossRefGoogle Scholar
  25. Rugge, K., Hofstetter, T. B., Haderlein, S. B., Bjerg, P. L., Knudsen, S., Zraunig, C., Mosbaek, H., & Christensen, T. H. (1998). Characterization of predominant reductants in ananaerobic leachate-contaminated aquifer by nitroaromatic robe compounds. Environmental Science & Technology, 32, 23–31.CrossRefGoogle Scholar
  26. Satapanajaru, T., Shea, P. J., Comfort, S. D., & Roh, Y. (2003). Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent treatment. Environmental Science & Technology, 37, 5219–5227.CrossRefGoogle Scholar
  27. Silvester, E., Charlet, L., Tournassat, C., Gehin, A., Greneche, J. M., & Liger, E. (2005). Redoxpotential measurements and mossbauer spectrometry of Fe(II) adsorbed onto Fe(III) (hydro)oxides. Geochimica et Cosmochimica Acta, 69, 4801–4815.CrossRefGoogle Scholar
  28. Sun, J., Fu, Y., He, G., Sun, X., & Wang, X. (2014). Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/grapheme nanocomposite. Catalysis Science & Technology, 4, 1742–1748.CrossRefGoogle Scholar
  29. Timothy, J. S., & Alan, T. S. (2002). Reduction of the pesticides oxamyl and methomyl by FeII: effect of pH and inorganic ligands. Environmental Science & Technology, 36, 653–661.CrossRefGoogle Scholar
  30. Tjisse, H., & Willem, H. (2007). Adsorption and surface oxidation of Fe(II) on metal(hydro)oxides. Geochimica et Cosmochimica Acta, 71, 5913–5933.CrossRefGoogle Scholar
  31. Wang, X., Liu, C., Li, X., Li, F., & Zhou, S. (2008). Photodegradation of 2-mercaptobenzothiazole in the γ-Fe2O3/oxalate suspension under UVA light irradiation. Journal of Hazardous Materials, 153, 426–433.CrossRefGoogle Scholar
  32. Wang, Y., Zhao, Y., Ma, Y., Liu, H., & Wei, Y. (2010). Photo-oxidation of Mordant Yellow 10 in aqueous dispersions of ferrihydrite and H2O2. Journal of Molecular Catalysis A, 325, 79–83.CrossRefGoogle Scholar
  33. Wu, Y., Chen, R., Liu, H., Wei, Y., & Wu, D. (2013). Feasibility and mechanism of p-nitrophenol decomposition in aqueous dispersions of ferrihydrite and H2O2 under irradiation. Reaction Kinetics, Mechanisms and Catalysis, 110, 87–99.CrossRefGoogle Scholar
  34. Xiong, Z., Lai, B., Yuan, Y., Cao, J., Yang, P., & Zhou, Y. (2016). Degradation of p-nitrophenol (PNP) in aqueous solution by a micro-size Fe0/O3 process (mFe0/O3): Optimization, kinetic, performance and mechanism. Chemical Engineering Journal, 302, 137–145.CrossRefGoogle Scholar
  35. Yang, X., Cui, H., Li, Y., Qin, J., Zhang, R., & Tang, H. (2013). Fabrication of Ag3PO4 - graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catalysis, 3(3), 363–369.CrossRefGoogle Scholar
  36. Yu, T. Y., Zeng, J., Lim, B., & Xia, Y. N. (2010). Aqueous-phase synthesis of Pt/CeO2 hybridnanostructures and their catalytic properties. Advanced Materials, 22, 5188–5192.CrossRefGoogle Scholar
  37. Zhang, B., Li, F., Wu, T., Sun, D. J., & Li, Y. J. (2015). Adsorption of p-nitrophenol fromaqueous solutions using nanographite oxide. Colliod Surf. A, 464, 78–88.CrossRefGoogle Scholar
  38. Zhao, J., Lu, Q., Wang, Q., & Ma, Q. (2016). A-Fe2O3 nanoparticles on Bi2MoO6 nanofibers: One dimensional heterostructures synergistic system with enhanced photocatalytic activity. Superlattices and Microstructures, 91, 148–157.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Faqi Li
    • 1
  • Kaili Zhu
    • 1
  • Bo Liu
    • 1
  • Nannan Wang
    • 1
  • Hui Liu
    • 1
  • Rufen Chen
    • 1
  1. 1.College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangPeople’s Republic of China

Personalised recommendations