Evaluation of Magnetic Coagulant (α-Fe2O3-MO) and its Reuse in Textile Wastewater Treatment

  • Tássia Rhuna Tonial dos Santos
  • Gustavo Affonso Pisano Mateus
  • Marcela Fernandes Silva
  • Carolina Sayury Miyashiro
  • Leticia Nishi
  • Murilo Barbosa de Andrade
  • Márcia Regina Fagundes-Klen
  • Raquel Guttieres Gomes
  • Rosângela Bergamasco


The textile industries are characterized as one of the biggest consumers of potable water and chemical products throughout its process, being responsible for the elevated wastewater generation with intense coloration and wide polluting potential. In this context, the present study proposes the development and application of a new coagulant material for textile wastewater treatment. The proposed coagulant (α-Fe2O3-MO) was composed by hematite nanoparticles (α-Fe2O3) obtained by a simple non-pollutant methodology, associated with Moringa oleifera (MO) seeds saline extract compounds. Coagulation/flocculation (CF) efficiency was evaluated by removal of physicochemical parameters such as apparent color, turbidity, and compounds with absorption at UV254nm (UV254nm) through CF tests carried out on Jar test equipment and sedimentation carried out in the presence and absence of external magnetic field (600 k Am−1). Kinetics sedimentation was from 0 to 90 min. The use of this new coagulant allowed the removal of 92.37% for apparent color, 91.43% for turbidity, and 46.09% for UV254nm, indicating that the proposed coagulant association was efficient in the treatment of this type of wastewater under external magnetic field with only 10 min of sedimentation. In addition, the resulting sludge from CF process was tested as base material for a new coagulant synthesis, demonstrating great reuse potential. Therefore, the new proposed coagulant, composed of α-Fe2O3 and the compounds present in the seed extract of MO, has applicability for textile wastewater treatment demonstrating high removal rate for all evaluated parameters with cost reduction in the proposed treatment for this wastewater.


Hematite Moringa oleifera Magnetic sedimentation Textile wastewater 



The authors thank the financial support of CAPES and Fundação Araucária.


  1. Adeleye, A. S., Conway, J. R., Garner, K., Huang, Y., Sul, Y., & Keller, A. A. (2016). Engineered nanomaterials for water treatment and remediations: cost, benefits, and applicability. Chemical Engineering Journal, 286, 530–538.CrossRefGoogle Scholar
  2. Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using nano-materials. Arabian Journal of Chemistry.
  3. APHA. (2005). Standard methods for the examination of water and wastewater. New York: American Public Health Association.Google Scholar
  4. Arbari, A., Desclaux, S., Rouch, J. C., Aptel, P., & Remigy, J. C. (2006). New UV-photografted nanofiltration membranes for the treatment of colored textile dye effluents. J. Memb. Sci, 286, 342–350.CrossRefGoogle Scholar
  5. Babu, B. R., Parande, A. K., Raghu, S., & Kumar, T. P. (2007). Cotton textile processing: waste generation and effluent treatment. J. Cotton. Sci, 11, 141–153.Google Scholar
  6. Baptista, A. T. A., Coldebella, P. F., Cardines, P. H. F., Gomes, R. G., Vieira, M. F., Bergamasco, R., & Vieira, A. M. S. (2015). Coagulation–flocculation process with ultrafiltered saline extract of Moringa oleifera for the treatment of surface water. Chemical Engineering Journal, 276, 166–173.CrossRefGoogle Scholar
  7. Bidhendi, G. R. N., Torabian, A., Ehsami, H., & Razmkhah, N. (2007). Evaluation of industrial wastewater treatment with coagulants and polyelectrolyte as coagulant aid. Iran. J. Environ. Health Sci. Eng, 4, 29–36.Google Scholar
  8. Bongiovani, M. C., Camavho, F. P., Nishi, L., Coldebella, P. F., Valverde, K. C., Vieira, A. M. S., & Bergamasco, R. (2014). Improvement of the coagulation/flocculation process using a combination of Moringa oleifera Lam with anionic polymer in water treatment. Environmental Technology, 35, 2227–2226.CrossRefGoogle Scholar
  9. Brumfiel, G. (2003). Nanotechnology: a little knowledge. Nature, 424, 246–248.CrossRefGoogle Scholar
  10. Christie, R. (2001). Colour chemistry. Cambridge: the Royal Society of Chemistry.Google Scholar
  11. Ciabatti, I., Tognotti, F., & Lombardi, L. (2010). Treatment and reuse of dyeing effluents by potassium ferrate. Desalination, 250, 222–228.CrossRefGoogle Scholar
  12. Couto Jr., O. M., Barros, M. A. S. D., & Pereira, N. C. (2013). Study on coagulation and flocculation for treating effluents of textile industry. Acta Sci. Technol, 35, 83–88.Google Scholar
  13. Debik, E., Kaykioglu, G., Coban, A., & Koyuncu, I. (2010). Reuse of anaerobically and aerobically pre-treated textile wastewater by UF and NF membranes. Desalination, 256, 174–180.CrossRefGoogle Scholar
  14. El-Gohary, F., & Tawfik, A. (2009). Decolourisation and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, 249, 1159–1164.CrossRefGoogle Scholar
  15. Foo, K. Y., & Hameed, B. H. (2010). Decontamination of textile wastewater via TiO2/activated carbon composite materials. Advances in Colloid and Interface Science, 159, 130–143.CrossRefGoogle Scholar
  16. Gao, B. Y., Yue, Q. Y., Wang, Y., & Zhou, W. Z. (2007). Color removal from dye-containing wastewater by magnesium chloride. Journal of Environmental Management, 82, 167–172.CrossRefGoogle Scholar
  17. Georgiu, D., Aivazidis, A., Hatiras, J., & Gimouhpoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research, 37, 2248–2250.CrossRefGoogle Scholar
  18. Golob, V., Vinder, A., & Simonic, M. (2005). Efficiency of coagulation/flocculation method for treatment of dye bath effluents. Dyes and Pigments, 67, 93–97.CrossRefGoogle Scholar
  19. Gotic, M., & Music, S. (2007). Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4. Journal of Molecular Structure, 834-836, 445–453.CrossRefGoogle Scholar
  20. Gupta, V. K., Tyagi, I., Sadegh, H., Shahryari-Ghoshekand, R., Makhlouf, A. S. H., & Maazinejad, B. (2015). Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Science, Technology and Development, 34, 195–214.CrossRefGoogle Scholar
  21. Hai, F. I., Yamamoto, K., & Fukushi, K. (2007). Hybrid treatment systems for dye wastewater. Critical Reviews in Environmental Science and Technology, 37, 315–377.CrossRefGoogle Scholar
  22. Jorfi, S., Barzegar, G., Ahmadi, M., Soltani, R. D. C., Takdastan, A., Saeedi, R., & Abtahi, M. (2016). Enhanced coagulation-photocatalytic treatment of acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. Journal of Environmental Management, 177, 111–118.CrossRefGoogle Scholar
  23. Khaled, A., El-Nemi, A., El-Sikailu, A., & Abdelwahab, O. (2009). Treatment of artificial textile dye effluent containing direct yellow 12 by orange peel carbon. Desalination, 238, 210–232.CrossRefGoogle Scholar
  24. Kihal, A., Bouzabata, B., Fillion, G., & Fruchart, D. (2009). Magnetic and structural properties of nanocrystalline iron oxides. Physics Procedia, 2, 665–671.CrossRefGoogle Scholar
  25. Kim, T. H., Park, C., Yang, J., & Kim, S. (2004). Comparison of dispersive and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of Hazardous Materials, 112, 95–103.CrossRefGoogle Scholar
  26. Kumar, P., Prasad, B., Mishra, I. M., & Chand, S. (2008). Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation. Journal of Hazardous Materials, 153, 635–645.CrossRefGoogle Scholar
  27. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chemical Reviews, 108, 2064–2110.CrossRefGoogle Scholar
  28. Lazarova, V., Cirelli, G., Jeffrey, P., Salgot, M., Icekson, N., & Brissaud, F. (2000). Enhancement of integrated water management and water reuse in Europe and the Middle East. Water Science and Technology, 42, 193–202.Google Scholar
  29. Lee, Y. H., Matthews, R. D., & Pavlostathis, S. G. (2006). Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation–reduction conditions. Water Environment Research, 78, 156–169.CrossRefGoogle Scholar
  30. López-Ramírez, J. A., Oviedo, M. D. C., & Alonso, J. M. Q. (2006). Comparative studies of reverse osmosis membranes for wastewater reclamation. Desalination, 191, 137–147.CrossRefGoogle Scholar
  31. Lu, W. Z., & Leung, Y. T. (2003). A preliminary study on potential of developing shower/laundry wastewater reclamation and reuse system. Chemosphere, 52, 1451–1459.CrossRefGoogle Scholar
  32. Lu, H. A., Salabas, E. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis protection, functionalization and application. Angewandte Chemie (International Ed. in English), 46, 1222–1244.CrossRefGoogle Scholar
  33. Madrona, G. S., Serpelloni, G. B., Vieira, A. M. S., Nishi, L., Cardoso, K. C., & Bergamasco, R. (2010). Study of the effect of saline solution on the extraction of the Moringa oleifera seed’s active component for water treatment. Water, Air, and Soil Pollution, 211, 409–415.CrossRefGoogle Scholar
  34. Mangale, S. M., Chonde, S. G., & Raut, P. D. (2012). Use of Moringa oleifera (Drumstick) seed as natural adsorbent and antimicrobial agent for groundwater treatment. Research Journal of Recent Sciences, 1, 31–40.Google Scholar
  35. Marcucci, M., Nosenzo, G., Capannelli, G., Ciabatti, I., Corrieri, D., & Ciardelli, G. (2001). Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination, 138, 75–82.CrossRefGoogle Scholar
  36. Martinez-Huitle, C. A., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis. B, Environmental, 87, 105–145.CrossRefGoogle Scholar
  37. Mateus, G. A. P., Formentini-Schmitt, D. M., Nishi, L., Fagundes-Klen, M. R., Gomes, R. G., & Bergamasco, R. (2017a). Coagulation/flocculation with Moringa oleifera and membrane filtration for dairy wastewater treatment. Water, Air, and Soil Pollution, 228, 342.CrossRefGoogle Scholar
  38. Mateus, G. A. P., Pinto, L. A., Baptista, A. T. A., Nishi, L., Fagundes-Klen, M. R., Gomes, R. G., Araújo, A. A., & Bergamasco, R. (2017b). Evaluation of natural coagulant Moringa oleifera Lam. in the treatment of dairy wastewater in different pH. Acta Horticulturae, 1158, 357–364.CrossRefGoogle Scholar
  39. Medvedeva, I., Bakhteeva, I., Zhakov, S., Revvo, A., Uimin, M., Yermakov, A., Byzov, I., & Shchegoleva, N. (2015). Separation of Fe3O4 nanoparticles from water by sedimentation in a gradient magnetic field. J. Water Resource Prot, 7, 111–118.CrossRefGoogle Scholar
  40. Nand, V., Maata, M., Koshy, K., & Sotheeswawan, S. (2012). Water purification using Moringa oleifera and other locally available seeds in Fiji for heavy metal removal. Int. J. Appl. Sci. Technol, 5, 125–129.Google Scholar
  41. Ndabigengesere, A., Narasiah, K. S., & Subba, N. K. (1998). Quality of water treated by coagulation using Moringa oleifera seeds. Water Research, 32, 781–791.CrossRefGoogle Scholar
  42. Okoli, C., Boutonnet, M., Järås, S., & Rajarao-Kuttuva, G. (2012). Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment. Journal of Nanoparticle Research, 14, 1194–1203.CrossRefGoogle Scholar
  43. Okuda, T., Baes, A. U., Nishijima, W., & Okuda, M. (2001). Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution. Water Research, 35, 405–410.CrossRefGoogle Scholar
  44. Ortiz-Monsalve, S., Dornelles, J., Poll, E., Ramirez-Castrillón, M., Valente, P., & Gutterres, M. (2017). Biodecolourisation and biodegradation of leather dyes by a native isolate of Trametes villosa. Process Safety and Environment Protection, 109, 437–451.CrossRefGoogle Scholar
  45. Özdemir, Ö., & Dunlop, D. J. (2014). Hysteresis and coercivity of hematite. J. Geophys. Res.: Solid Earth, 119, 2582–2594.CrossRefGoogle Scholar
  46. Papic, S., Koprivanas, N., & Bozic, A. L. (2000). Removal from reactive dyes from wastewater using Fe(III) coagulant. Coloration Technology, 116(352), 358.Google Scholar
  47. Papic, S., Koprivanac, N., Bozic, A. L., & Metes, A. (2004). Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation carbon adsorption process. Dyes and Pigments, 62(291), 298.Google Scholar
  48. Pastor, J. M., Pérez-Landazábal, J. I., Gómez-Polo, C., Recarte, V., Larumbe, S., Santa Marta, R., Silva, M. F., Pineda, E. A. G., Hechenleitner, A. A. W., & Lima, M. K. (2012). Entropy change linked to the magnetic field induced Morin transition in hematite nanoparticles. Applied Physics Letters.
  49. Patel, H., & Vashi, R. T. (2010). Treatment of textile wastewater by adsorption and coagulation. E-Journal of Chemistry, 7, 1468–1476.CrossRefGoogle Scholar
  50. Patel, H., & Vashi, R. T. (2012). Removal of Congo red dye from its aqueous solution using natural coagulants. Journal of Saudi Chemical Society, 16, 131–136.CrossRefGoogle Scholar
  51. Pedroi, D. (2007). A study on iron oxide nanoparticles coated with dextrin obtained by coprecipitation. Dig. J. Nanomater. Bios, 2, 169–173.Google Scholar
  52. Peng, D., Beysen, S., Li, Q., Sun, Y., & Yang, L. (2010). Hydrothermal synthesis of monodisperse–Fe2O3 hexagonal platelets. Particuology, 8, 386–389.CrossRefGoogle Scholar
  53. Pérez-Landazáball, J. I., Gómez-Polol, C., Recartel, V., Larumbel, S., Sánchez-Alarcos, V., Silva, M. F., Pineda, E. A. G., Hechenleitner, A. A. W., Lima, M. K., & Rodriguez-Velamazán, J. A. (2015). Morin transition in hematite nanoparticles analyzed by neutron diffraction. Journal of Physics: Conference Series, 663, 1–6.Google Scholar
  54. Radoiu, M. T., Martin, D. I., Calinescu, I., & Iovu, H. (2004). Preparation of polyelectrolytes for wastewater treatment. Journal of Hazardous Materials, 106, 27–37.CrossRefGoogle Scholar
  55. Rajput, S., Pittman Jr., C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346.CrossRefGoogle Scholar
  56. Reck, I. M., Paixão, R. M., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. (2018). Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. Journal of Cleaner Production, 171, 85–97.CrossRefGoogle Scholar
  57. Robinson, T., Mcmullan, G., Marchant, R., & Nigham, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with proposed alternatives. Bioresource Technology, 77, 247–255.CrossRefGoogle Scholar
  58. Rockwood, J. L., Anderson, B. G., & Casamatta, D. A. (2013). Potential uses of Moringa oleifera and an examination of antibiotic efficacy conferred by M. oleifera seed and leaf extracts using crude extraction techniques available to underserved indigenous populations. Int. J. Phytothearpy Res, 3, 61–71.Google Scholar
  59. Rodríguez-Couto, S. (2015). Degradation of azo dyes by white-rot fungi. In S. N. Singh (Ed.), Microbial degradation of synthetic dyes in wastewaters (pp. 315–331). New York: Springer.Google Scholar
  60. Rufus, A., Sreeju, N., Vilas, V., & Philip, D. (2017). Biosynthesis of hematite (α-Fe2O3) nanostructures: size effects on applications in thermal conductivity, catalysis, and antibacterial activity. Journal of Molecular Liquids, 242, 537–549.CrossRefGoogle Scholar
  61. Sadykov, V. A., Isupova, L. A., Zolotraskii, I. A., Bobrova, L. N., Noskov, A. S., Parmon, V. N., Brushtein, E. A., Telyatnikova, T. V., Chernyshev, V. I., & Lunin, V. V. (2000). Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives. Appl. Catal. A, 204, 59–87.CrossRefGoogle Scholar
  62. Sajjadi, S. H., & Goharshadi, E. K. (2017). Highly monodispersed hematite cubes for removal of ionic dyes. Journal of Environmental Chemical Engineering, 5, 1096–1106.CrossRefGoogle Scholar
  63. Santos, T. R. T., Silva, M. F., Nishi, L., Vieira, A. M. S., Fagundes-Klen, M. R., Andrade, M. B., Vieira, M. F., & Bergamasco, R. (2016). Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment. Environmental Science and Pollution Research, 23, 7692–7700.CrossRefGoogle Scholar
  64. Selkuc, H. (2005). Decolourisation and detoxification of textile wastewater by ozonation and coagulation process. Dyes Pig., 64, 217–222.CrossRefGoogle Scholar
  65. Sharma, B. R., Dhuldhoya, N. C., & Merchant, U. C. (2006). Flocculants—an ecofriendly approach. J. Polym. Enviro, 14, 195–2002.CrossRefGoogle Scholar
  66. Ströher, A. P., Couto Jr., O. M., Menezes, M. L., Bergamasco, R., Pereira, N., & C. (2012). Moringa oleifera Lam application in the treatment of effluent from wash jeans. E-xacta, 5, 61–66.Google Scholar
  67. Suksaroj, C., Heran, M., Allegre, C., & Persin, F. (2005). Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse. Desalination, 178, 333–341.CrossRefGoogle Scholar
  68. Sulaiman, M., Zhugila, D. A., Mohammed, K., Umar, D. M., Aliyu, B., & Mana, F. A. (2017). Moringa oleifera seed as alternative natural coagulant for potential application in water treatment: a review. J. Adv. Rev. Sci. Res., 1, 1–11.Google Scholar
  69. Tan, B. H., Teng, T. T., & Omar, A. K. M. (2000). Removal of dyes and industrial dyes wastes by magnesium chloride. Water Research, 34, 597–601.CrossRefGoogle Scholar
  70. Tavares, F. O., Pinto, L. A. M., Bassetti, F. J., Vieira, M. F., Bergamasco, R., & Vieira, A. M. S. (2017). Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb(II) removal from contaminated water. Environmental Technology.
  71. Tun, L. L., Baraodain, W. A., Gaspillo, P. D., & Suzuki, M. (2007). A study on the relative performance of different coagulants and the kinetics of COD in the treatment of a textile bleaching and dyeing industrial wastewater. ASEAN J. Chem. Eng, 7, 49–60.Google Scholar
  72. USEPA. (1997). Profile of the textile industry. Washington: EPA Office of Compliance Sector Notebook Project.Google Scholar
  73. Ustun, G. E., Solmaz, S. K. A., & Birgul, A. (2007). Regeneration of industrial district wastewater using a combination of Fenton process and ion exchange—a case of study. Resour. Conserv. Recy, 52, 425–440.CrossRefGoogle Scholar
  74. Verma, A. K., Dash, R. R., & Bhumia, P. A. (2012). Review on chemical coagulation/flocculation technologies for removal of colour from wastewaters. Journal of Environmental Management, 93, 154–168.CrossRefGoogle Scholar
  75. Wang, B., Wang, W., Han, H., Hu, H., & Zuang, H. (2012). Nitrogen removal and simultaneous nitrification and denitrification in a fluidized bed step-feed process. Journal of Environmental Sciences, 24, 303–308.CrossRefGoogle Scholar
  76. Zahrim, A. Y., Tizaoui, C., & Hilal, N. (2010). Evaluation of several commercial synthetic polymers as flocculant aids for removal of highly concentrated C.I. Acid black 210 dye. Journal of Hazardous Materials, 182, 624–630.CrossRefGoogle Scholar
  77. Zayed, M. A., Imam, N. G., Ahmed, M. A., & Sherbiny, D. H. E. L. (2017). Spectrophotometric analysis of hematite/magnetite nanocomposites in comparison with EDX and XRF techniques. Journal of Molecular Liquids, 231, 288–295.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tássia Rhuna Tonial dos Santos
    • 1
  • Gustavo Affonso Pisano Mateus
    • 2
  • Marcela Fernandes Silva
    • 1
  • Carolina Sayury Miyashiro
    • 3
  • Leticia Nishi
    • 1
  • Murilo Barbosa de Andrade
    • 1
  • Márcia Regina Fagundes-Klen
    • 3
  • Raquel Guttieres Gomes
    • 4
  • Rosângela Bergamasco
    • 1
  1. 1.Department of Chemical EngineeringUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Department of Biotechnology, Genetics and Cell BiologyUniversidade Estadual de MaringáMaringáBrazil
  3. 3.Department of Chemical EngineeringUniversidade Estadual do Oeste do ParanáToledoBrazil
  4. 4.Department of Food EngineeringUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations