Comparative Study of Lanthanum, Vanadium, and Uranium Bioremoval Using Different Types of Microorganisms

  • Alexey Safonov
  • Varvara Tregubova
  • Viktor Ilin
  • Kirill Boldyrev
  • Inga Zinicovscaia
  • Marina Frontasyeva
  • Tatiana Khijniak


Wastewater, containing vanadium, uranium, and lanthanum are produced by mining, nuclear, and other industries. Bacteria Pseudomonas putida, Halomonas mono, and cyanobacterium Spirulina platensis were used for lanthanum, vanadium, and uranium, removal from aqueous solutions by means of biosorption and bioreduction processes. A rapid rate of metal adsorption was observed within the first 5–15 min of the reaction. The pseudo-first-order model was found to correlate well with the experimental data. Bacteria show higher metal biosorption in comparison with cyanobacteria. The strong involvement of carboxyl, hydroxyl, carboxyl, and amide groups in studied metal binding was ascertained by FT-IR spectroscopy. Bioreduction studies carried out with Pseudomonas putida and Halomonas mono cells showed highness of metal reduction in alkaline conditions, resulting in the bioreduction of 69 and 85% of vanadate ions and 48 and 64% of uranyl ions, respectively. Using geochemical modeling, the insoluble metal phases were determined.


FT-IR spectroscopy Geochemical modeling Halomonas mono Neutron activation analysis Pseudomonas putida Spirulina platensis 



This work was supported by the Russian Foundation for Basic Research under Grant No. 15-33-20069.


  1. Adkins, J. P., Cornell, L. A., & Tanner, R. S. (1992). Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiology Journal, 10, 87–97.CrossRefGoogle Scholar
  2. Anonymous (2012) Patent RU2012107743A, Method for Biosorption Purification of Water From Heavy Metal Ions Using Saccharomyces cerevisiae Yeast.Google Scholar
  3. Carpentier, W., Sandra, K., De Smet, I., Brigé, A., De Smet, L., & Van Beeumen, J. (2003). Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Applied and Environmental Microbiology, 69(6), 3636–3639.CrossRefGoogle Scholar
  4. Cetinkaya Donmez, G., Aksu, Z., Ozturk, A., & Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry, 34(9), 885–892.CrossRefGoogle Scholar
  5. Chen, G. Q., Zhang, W. J., Zeng, G. M., Huang, J. H., Wang, L., & Shen, G. L. (2011). Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr (VI)-contaminated wastewater. Journal of Hazardous Materials, 186(2), 2138–2143.CrossRefGoogle Scholar
  6. Chojnacka, K., Chojnacki, A., & Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59(1), 75–84.CrossRefGoogle Scholar
  7. Clark, R. J. H., & Brown, D. (1975). The chemistry of vanadium, niobium and tantalum: Pergamon texts in inorganic. Pergamon Press.Google Scholar
  8. Correa, F. N., Luna, A. S., & da Costa, A. C. A. (2017). Kinetics and equilibrium of lanthanum biosorption by free and immobilized microalgal cells. Adsorption Science & Technology, 35(1–2), 137–152.CrossRefGoogle Scholar
  9. Evans, L. J., & Barabash, S. (2010). Molybdenum, silver, thallium and vanadium. In P. S. Hooda (Ed.), Trace elements in soils (pp. 515–549). Blackwell Publishing Ltd.Google Scholar
  10. Frontasyeva, M. (2011). Neutron activation analysis for the life sciences. A review. Physics of Particles and Nuclei, 42(2), 322–378.Google Scholar
  11. Gamez Grijalva, V. M. (2009). Biological and physico-chemical methods for treatment of semiconductor manufacturing effluents. PhD thesis, Arizona.Google Scholar
  12. Gorman-Lewis, D., Burns, P. C., & Fein, J. B. (2008). Review of uranyl mineral solubility measurements. The Journal of Chemical Thermodynamics, 40(3), 335–352.CrossRefGoogle Scholar
  13. Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7(2), 311–319.CrossRefGoogle Scholar
  14. Hashim, M. A., & Chu, K. H. (2004). Biosorption of cadmium by brown, green and red seaweeds. Chemical Engineering Journal, 97(2–3), 249–255.CrossRefGoogle Scholar
  15. Helfferich, F. G. (1962). Ion exchange. New York: McGraw Hill.Google Scholar
  16. Istok, D., Senko, J. M., Krumholz, L. R., Watson, D., Bogle, M. A., Peacock, A., Chang, Y.-J., & White, D. C. (2004). In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer environ. Science Technology, 38, 468–475. Scholar
  17. Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of chromium contaminants using bacteria. International journal of Environmental Science and Technology, 9(1), 183–193.CrossRefGoogle Scholar
  18. Kazy, S. K., Das, S. K., & Sar, P. (2006). Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. Journal of Industrial Microbiology and Biotechnology, 33, 773–783.CrossRefGoogle Scholar
  19. Merroun, M. L., Chekroun, K. B., Arias, J. M., & Gonzalez-Munoz, M. T. (2003). Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccharide observation. Chemosphere, 52, 113–120.CrossRefGoogle Scholar
  20. Monteiro, C. M., Marques, A. P. G. C., Castro, P. M. L., & Malcata, F. X. (2009). Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation, 20(5), 629–641.CrossRefGoogle Scholar
  21. Newsome, L., Morris, K., & Lloyd, J. R. (2014). The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chemical Geology, 363(10), 164–184.CrossRefGoogle Scholar
  22. Ortiz-Bernad, I., Anderson, R. T., Vrionis, H. A., & Lovley, D. R. (2004). Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Applied and Environmental Microbiology, 70(5), 3091–3095.CrossRefGoogle Scholar
  23. Özer, A., & Özer, D. (2003). Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. Journal of Hazardous Materials, 100(1–3), 219–229.CrossRefGoogle Scholar
  24. Palmieri, M. C., Volesky, B., & Garcia, O. (2002). Biosorption of lanthanum using Sargassum fluitans in batch system. Hydrometallurgy, 67, 31–36.CrossRefGoogle Scholar
  25. Pfennig, N., & Lippert, K. D. (1966). Uber das vitamin B12-bidurfnis phototropher schwefelbacterian. Archiv für Mikrobiologie, 55(3), 245–256.CrossRefGoogle Scholar
  26. Pons, M. P., & Fusté, M. C. (1993). Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028. Applied Microbiology and Biotechnology, 39(4–5), 661–665.CrossRefGoogle Scholar
  27. Rai, D., Felmy, A. R., & Ryan, J. L. (1990). Uranium (IV) hydrolysis constants and solubility product of UO2xH2O(am). Inorganic Chemistry, 29, 260–264.CrossRefGoogle Scholar
  28. Renshaw, J. C., Butchins, L. J., Livens, F. R., May, I., Charnock, J. M., & Lloyd, J. R. (2005). Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environmental Science and Technology, 39, 5657.CrossRefGoogle Scholar
  29. Romera, E., Gonzalez, F., Ballester, A., Blazquez, M. L., & Munoz, J. A. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology, 98, 3344.CrossRefGoogle Scholar
  30. Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48(4), 427–435.CrossRefGoogle Scholar
  31. Tsuruta, T. (2011). Biosorption of uranium for environmental applications using bacteria isolated from the uranium deposits. In I. Ahmad et al. (Eds.), Microbes and microbial technology: agricultural and environmental applications (pp. 267–281). New York: Springer.CrossRefGoogle Scholar
  32. Wall, J. D., & Krumholz, L. R. (2006). Uranium reduction. Annual Review of Microbiology, 60, 149–166.CrossRefGoogle Scholar
  33. Xu, X., Xia, S., Zhou, L., Zhang, Z., & Rittmann, B. E. (2015). Bioreduction of vanadium (V) in groundwater by autohydrogentrophic bacteria: mechanisms and microorganisms. Journal of Environmental Sciences, 30, 122–128.CrossRefGoogle Scholar
  34. Zarrouk, C. (1966). Contribution a l’etude d’une cyanophycee. Influence de divers factours physiques. et chimiques sur la croissance et la phytosynthese do Spirulina maxima. Dissertation. University of Paris. (in French).Google Scholar
  35. Zouboulis, A. I., Loukidou, M. X., & Matis, K. A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry, 39, 909–916.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Nuclear Safety Institute of the Russian Academy of SciencesMoscowRussia
  4. 4.Joint Institute for Nuclear ResearchDubnaRussia
  5. 5.Horia Holubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH)MagureleRomania
  6. 6.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations