Advertisement

Potentialities of Six Plant Species on Phytoremediation Attempts of Fuel Oil-Contaminated Soils

  • P. Matsodoum Nguemté
  • G. V. Djumyom Wafo
  • P. F. Djocgoue
  • I. M. Kengne Noumsi
  • A. Wanko Ngnien
Article

Abstract

A field experiment investigating the phytoremediation potential of six plant species—Goosegrass (Eleusine indica), Bermuda grass (Cynodon dactylon), Sessile joyweed (Alternanthera sessilis), Benghal dayflower (Commelina benghalensis), Lovanga (Cleome ciliata), and Chinese violet (Asystasia gangetica)—on soil contaminated with fuel oil (82.5 ml/kg of soil) have been conducted from March to August 2016. The experiments consider three modalities—Tn: unpolluted planted soils, To: unplanted polluted soils, and Tp: polluted planted soil—randomized arranged. Only three (E. indica, C. dactylon, and A. sessilis) of the six species survived while the others died 1 month after the beginning of experimentations. The relative growth indexes showed a strong similarity between the growth parameters of E. indica and C. dactylon, each on polluted and control soils, unlike A. sessilis. Total petroleum hydrocarbons (TPHs) removal efficiency were 82.56, 80.69, and 77% on soil planted with E. indica, C. dactylon, and A. sessilis, respectively; and 57.25% on non-planted soil. According to the bioconcentration and translocation factors, E. indica and A. sessilis are involved on rhizodegradation and phytoextraction of hydrocarbons whereas C. dactylon is only involved into rhizodegradation. Overall, E. indica and C. dactylon out-yielded A. sessilis in the phytoremediation capacity of fuel oil-contaminated soils.

Keywords

Fuel oil-contaminated soils Relative growth indexes Rhizodegradation Phytoextraction Phytoremediation potential 

Notes

Funding

The Schlumberger Foundation Faculty for the Future (FFTF) financed this project.

Supplementary material

11270_2018_3738_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22.6 kb)

References

  1. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881.  https://doi.org/10.1016/j.chemosphere.2013.01.075.CrossRefGoogle Scholar
  2. Akilla, B., & Manickavasakam, K. (2014). Anatomical studies on the seeds of Alternanthera sessilis Linn. ResearchGate. http://www.researchgate.net/publication/272770234_Anatomical_studies_on_the_seeds_of_Alternanthera_sessilis_Linn. Accessed 20 March 2017.
  3. Azadeh, V., Ebrahim, P., & Masoud, H. M. B. (2013). Phytoremediation, a method for treatment of petroleum hydrocarbon contaminated soils. Intl. J. Farm. & Alli. Sci., 2(21), 909–913.Google Scholar
  4. Badmus, M. A. O., Audu, T. O. K., & Anyata, B. U. (2007). Removal of lead ion from industrial wastewaters by activated carbon prepared from periwinkle shells (Typanotonus fuscatus). http://connection.ebscohost.com/c/articles/26215354/removal-lead-ion-from-industrial-wastewaters-by-activated-carbon-prepared-from-periwinkle-shells-typanotonus-fuscatus. Accessed 3 August 2016.
  5. Balasubramaniyam, A. (2015). The influence of plants in the remediation of petroleum hydrocarbon—contaminated sites. Pharmaceutical Analytical Chemistry: Open Access, 2015. doi: https://doi.org/10.4172/2471-2698.1000105.
  6. Hajabbasi, M. A. (2016). Importance of soil physical characteristics for petroleum hydrocarbons phytoremediation: a review. African Journal of Environmental Science and Technology, 10(11), 394–405.  https://doi.org/10.5897/AJEST2016.2169.CrossRefGoogle Scholar
  7. Kang, J. W. (2014). Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology Letters, 36(6), 1129–1139.  https://doi.org/10.1007/s10529-014-1466-9.CrossRefGoogle Scholar
  8. Kouawa, T., Wanko, A., Beck, C., Mose, R., & Maïga, A. H. (2015). Feasibility study of faecal sludge treatment by constructed wetlands in Sahelian context: Experiments with Oryza longistaminata and Sporobolus pyramidalis species in Ouagadougou. Ecological Engineering, 84, 390–397.  https://doi.org/10.1016/j.ecoleng.2015.09.021.CrossRefGoogle Scholar
  9. Liste, H.-H., & Felgentreu, D. (2006). Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. ResearchGate. https://www.researchgate.net/publication/223504657_Crop_growth_culturable_bacteria_and_degradation_of_petrol_hydrocarbons_PHCs_in_a_long-term_contaminated_field_soil. Accessed 19 May 2017.
  10. Lotfinasabasl, S., Gunale, V., & Rajurkar, N. (2013). Petroleum hydrocarbons pollution in soil and its bioaccumulation in mangrove species Avicennia marina from Alibang mangrove ecosystem, India. Int J Adv Res Tech, 2(2). http://www.academia.edu/download/31020807/Petroleum-Hydrocarbons-Pollution-in-Soil-and-its-Bioaccumulation-in-mangrove-species-Avicennia.pdf. Accessed 3 August 2016Google Scholar
  11. Lu, M., Zhang, Z., Sun, S., Wei, X., Wang, Q., & Su, Y. (2009). The use of Goosegrass (Eleusine indica) to remediate soil contaminated with petroleum. Water, Air, & Soil Pollution, 209(1–4), 181–189.  https://doi.org/10.1007/s11270-009-0190-x.Google Scholar
  12. Macaulay, B. (2015). Understanding the behaviour of oil-degrading micro-organisms to enhance the microbial remediation of spilled petroleum. Applied Ecology and Environmental Research, 13, 247–261.Google Scholar
  13. Masakorala, K., Yao, J., Guo, H., Chandankere, R., Wang, J., Cai, M., et al. (2013). Phytotoxicity of long-term total petroleum hydrocarbon-contaminated soil—a comparative and combined approach. Water, Air, & Soil Pollution, 224(5), 1553.  https://doi.org/10.1007/s11270-013-1553-x.CrossRefGoogle Scholar
  14. Merkl, N., Schultze-Kraft, R., & Infante, C. (2004). Phytoremediation in the Tropics—The Effect of Crude Oil on the Growth of Tropical Plants. Bioremediation Journal, 8(3–4), 177–184.  https://doi.org/10.1080/10889860490887527.
  15. Merkl, N., Schultze-Kraft, R., & Infante, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water, Air, and Soil Pollution, 165(1–4), 195–209.  https://doi.org/10.1007/s11270-005-4979-y.CrossRefGoogle Scholar
  16. Meudec, A., Dussauze, J., Deslandes, E., & Poupart, N. (2006). Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments. Chemosphere, 65(3), 474–481.  https://doi.org/10.1016/j.chemosphere.2006.01.058.CrossRefGoogle Scholar
  17. Nguemté, P., Wafo, G. V., Djocgoue, P., Kengne Noumsi, I., & Wanko Ngnien, A. (2017). Phytoremédiation de sols pollués par les hydrocarbures—évaluation des potentialités de six espèces végétales tropicales. Revue des sciences de l’eau/Journal of Water Science, 30(1), 13–19.  https://doi.org/10.7202/1040058ar.Google Scholar
  18. Njoku, K. L., Akinola, M. O., Nkemdilim, C. M., Ibrahim, P. M., & Olatunbosun, A. S. (2014). Evaluation of the potentials of three grass plants to remediate crude oil polluted soil. Current Advances in Environmental Science, 2(4), 131–137.  https://doi.org/10.14511/caes.2014.020402.CrossRefGoogle Scholar
  19. Oleszczuk, P., & Baran, S. (2005). Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (Salix). Water, Air, and Soil Pollution, 168(1–4), 91–111.  https://doi.org/10.1007/s11270-005-0884-7.CrossRefGoogle Scholar
  20. Osadolor, C. H., & Animetu, S. (2013). Assessment of show star grass (Melampodium paludosum) for phytoremediation of motor oil contaminated soil. Civil and Environmental Research. https://www.academia.edu/31223761/Assessment_of_Show_Star_Grass_Melampodium_Paludosum_for_Phytoremediation_of_Motor_Oil_Contaminated_Soil. Accessed 21 March 2017.
  21. Oyedeji, S., Raimi Olawale, I., & Odiwe Ifechukwude, A. (2013). A comparative assessment of the crude oil-remediating potential of Cynodon dactylon and Eleusine indica. http://www.academia.edu/6762354/A_comparative_assessment_of_the_crude_oil-remediating_potential_of_Cynodon_dactylon_and_Eleusine_indica. Accessed 3 August 2016.
  22. Peng, S., Zhou, Q., Cai, Z., & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials, 168(2–3), 1490–1496.  https://doi.org/10.1016/j.jhazmat.2009.03.036.CrossRefGoogle Scholar
  23. Pérez-Hernández, I., Ochoa-Gaona, S., Schroeder, R. H. A., Rivera-Cruz, M. C., & Geissen, V. (2013). Tolerance of four tropical tree species to heavy petroleum contamination. Water, Air, & Soil Pollution, 224(8), 1637.  https://doi.org/10.1007/s11270-013-1637-7.CrossRefGoogle Scholar
  24. Ray, J. G., & Georges, J. (2009). Phytosociology of roadside communities to identify ecological potentials of tolerant species. Journal of Ecology and the Natural Environment, 1(5), 184–190.Google Scholar
  25. Shahsavari, E., Adetutu, E. M., Anderson, P. A., & Ball, A. S. (2013). Tolerance of selected plant species to petrogenic hydrocarbons and effect of plant rhizosphere on the microbial removal of hydrocarbons in contaminated soil. Water, Air, & Soil Pollution, 224(4), 1495.  https://doi.org/10.1007/s11270-013-1495-3.CrossRefGoogle Scholar
  26. Shirdam, R., Zand, A., Bidhendi, G., & Mehrdadi, N. (2008). Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phytoprotection, Phytoprotection, 89(1), 21–29.  https://doi.org/10.7202/000379ar.CrossRefGoogle Scholar
  27. Webster, T. M., Burton, M. G., Culpepper, A. S., York, A. C., & Prostko, E. P. (2005). Tropical Spiderwort (Commelina benghalensis): A Tropical Invader Threatens Agroecosystems of the Southern United States. Weed Technology, 19(3), 501–508.Google Scholar
  28. Wu, Q., Wang, S., Thangavel, P., Li, Q., Zheng, H., Bai, J., & Qiu, R. (2011). Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. International Journal of Phytoremediation, 13(8), 788–804.  https://doi.org/10.1080/15226514.2010.525562.CrossRefGoogle Scholar
  29. Xiao, N., Liu, R., Jin, C., & Dai, Y. (2015). Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecological Engineering, 75, 384–391.  https://doi.org/10.1016/j.ecoleng.2014.12.008.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • P. Matsodoum Nguemté
    • 1
    • 2
  • G. V. Djumyom Wafo
    • 1
  • P. F. Djocgoue
    • 1
  • I. M. Kengne Noumsi
    • 1
  • A. Wanko Ngnien
    • 2
  1. 1.Laboratory of Biotechnology and Environment, Department of Plant BiologyUniversity of Yaounde IYaoundeCameroon
  2. 2.ICube UMR 7357, University of StrasbourgStrasbourgFrance

Personalised recommendations