Experimental Design Optimization of Dairy Wastewater Ozonation Treatment

  • Magno dos Santos Pereira
  • Alisson Carraro Borges
  • Fernanda Fernandes Heleno
  • Lêda Rita D’Antonino Faroni
  • Joaquim Carlos Gomes Esteves da Silva


In this work, an advanced oxidation process using ozonation combined with hydrogen peroxide (H2O2) and catalyzed by manganese (Mn2+) in alkaline conditions was investigated to degrade the organic matter present in a synthetic dairy wastewater (SDW) with a chemical oxygen demand (COD) of 2.3 g L−1. The effect of independent factors such as pH (7–13), H2O2/O3 ratio (0–1), and Mn2+ concentration (0–1.71 g L−1) has been evaluated and the process optimized using a factorial design and a central composite design (CCD) in sequence. The experiment has been made in batch trials using 2 L of SDW in which ozone was bubbled during 2 h and samples collected for COD analyses, used as response variable. In the factorial experiment, the effect of H2O2 was not significant for all the ratios tested (p value > 0.10), and the effects of the pH and Mn2+ were positive and significant (p value ≤ 0.05). In the CCD, the linear (positive) and quadratic (negative) effects of pH and Mn2+ were significant (p values ≤ 0.05 and ≤ 0.10, respectively). According to the response optimizer, the optimal condition for the ozonation catalyzed by manganese at alkaline medium (COD removal of 69.4%) can be obtained in pH 10.2 and Mn2+ concentration of 1.71 g L−1. Moreover, COD removals above 60% can be obtained for pH values of 9.5 to 11 and Mn2+ concentrations of 0.6 g L−1.


Ozone AOP Catalytic ozonation Synthetic dairy wastewater Manganese Hydrogen peroxide 



We thank the Erasmus Be Mundus Program (BM15DM0984) and FAPEMIG Foundation (PPM Program).


  1. Ahmadi, M., Kakavandi, B., Jaafarzadeh, N., & Babaei, A. A. (2017). Catalytic ozonation of high saline petrochemical wastewater using PAC@ Fe II Fe 2 III O 4: optimization, mechanisms and biodegradability studies. Separation and Purification Technology, 177, 293–303.  https://doi.org/10.1016/j.seppur.2017.01.008.CrossRefGoogle Scholar
  2. APHA, AWWA, & WEF. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington: American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  3. Arslan, I., Balcioglu, I. A., Tuhkanen, T., & Bahnemann, D. (2000). H2O2/UV-C and Fe 2+/H2 O2/UV-C versus TiO2/UV-A treatment for reactive dye wastewater. Journal of Environmental Engineering, 126(10), 903–911.  https://doi.org/10.1061/(ASCE)0733-9372(2000)126:10(903).CrossRefGoogle Scholar
  4. Assalin, M. R., Silva, P. L., & Durán, N. (2006). Comparison of the efficiency of ozonation and catalytic ozonation (Mn II and Cu II) in phenol degradation. Química Nova, 29(1), 24–27.  https://doi.org/10.1590/S0100-40422006000100006.CrossRefGoogle Scholar
  5. Diya’uddeen, B. H., Daud, W. M. A. W., & Aziz, A. A. (2011). Treatment technologies for petroleum refinery effluents: a review. Process Safety and Environmental Protection, 89(2), 95–105.  https://doi.org/10.1016/j.psep.2010.11.003.CrossRefGoogle Scholar
  6. Gottschalk, C., Libra, J. A., & Saupe, A. (2009). Ozonation of water and waste water: a practical guide to understanding ozone and its applications (2ed.). Weinheim: Wiley.CrossRefGoogle Scholar
  7. Gracia, R., Aragües, J. L., & Ovelleiro, J. L. (1996). Study of the catalytic ozonation of humic substances in water and their ozonation byproducts. Ozone: Science & Engineering, 18(3), 195–208.  https://doi.org/10.1080/01919519608547326.CrossRefGoogle Scholar
  8. Hu, E., Shang, S., Tao, X.-M., Jiang, S., & Chiu, K.-L. (2016). Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. Journal of Cleaner Production, 137, 1055–1065.  https://doi.org/10.1016/j.jclepro.2016.07.194.CrossRefGoogle Scholar
  9. Huang, Y., Cui, C., Zhang, D., Li, L., & Pan, D. (2015). Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon. Chemosphere, 119, 295–301.  https://doi.org/10.1016/j.chemosphere.2014.06.060.CrossRefGoogle Scholar
  10. Hübner, U., Zucker, I., & Jekel, M. (2015). Options and limitations of hydrogen peroxide addition to enhance radical formation during ozonation of secondary effluents. Journal of Water Reuse and Desalination, 5(1), 8–16.  https://doi.org/10.2166/wrd.2014.036.CrossRefGoogle Scholar
  11. Lima, A. P. S., Scaratti, G., Bakkar, J. R., José, H. J., & Moreira, R. F. P. (2013). Nanopartículas de óxidos de manganês, ferro e cério como catalisadores da ozonização de efluentes de refinaria de petróleo. Blucher Chemical Engineering Proceedings, 1, 9573–9580.  https://doi.org/10.5151/chemeng-cobeq2014-2011-16418-176609.Google Scholar
  12. Ma, J., & Graham, N. J. D. (1997). Preliminary investigation of manganese-catalyzed ozonation for the destruction of atrazine. Ozone: Science & Engineering, 19(3), 227–240.  https://doi.org/10.1080/01919519708547303.CrossRefGoogle Scholar
  13. Mahmoud, A., & Freire, R. S. (2007). Métodos emergentes para aumentar a eficiência do ozônio no tratamento de águas contaminadas. Química Nova, 30(1), 198.  https://doi.org/10.1590/S0100-40422007000100032.CrossRefGoogle Scholar
  14. Nerín, C., Aznar, M., & Carrizo, D. (2016). Food contamination during food process. Trends in Food Science & Technology, 48, 63–68.  https://doi.org/10.1016/j.tifs.2015.12.004.CrossRefGoogle Scholar
  15. Ni, C.-H., Chen, J.-N., & Yang, P.-Y. (2003). Catalytic ozonation of 2-dichlorophenol by metallic ions. Water Science and Technology, 47(1), 77–82.Google Scholar
  16. Paschoalato, C. F. P. R., Trimailovas, M. R., & Di Bernardo, L. (2008). Formation of halogenated organic byproducts using preoxidation with chlorine, ozone and peroxone and post-chlorination of water containing humic substances. Engenharia Sanitaria e Ambiental, 13(3), 313–322.  https://doi.org/10.1590/S1413-41522008000300011.CrossRefGoogle Scholar
  17. Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: a review. Journal of Environmental Management, 110, 48–68.  https://doi.org/10.1016/j.jenvman.2012.05.018.CrossRefGoogle Scholar
  18. Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311–4340.  https://doi.org/10.1016/j.watres.2011.05.035.CrossRefGoogle Scholar
  19. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255.  https://doi.org/10.1016/S0960-8524(00)00080-8.CrossRefGoogle Scholar
  20. Silva, L. V. C., Andrade, M. V., Rodrigues, K., & Marinho, G. (2013). Treatment of synthetic dairy wastewater in batch reactors inoculated with Aspergillus niger AN400. Engenharia Sanitaria e Ambiental, 18(4), 371–380.  https://doi.org/10.1590/S1413-41522013000400009.CrossRefGoogle Scholar
  21. Slavov, A. K. (2017). General characteristics and treatment possibilities of dairy wastewater—a review. Food Technology and Biotechnology, 55(1), 14–28.  https://doi.org/10.17113/ftb. Scholar
  22. Tikariha, A., & Sahu, O. (2014). Study of characteristics and treatments of dairy industry waste water. Journal of Applied & Environmental Microbiology, 2(1), 16–22.  https://doi.org/10.12691/jaem-2-1-4.Google Scholar
  23. Torres-Sánchez, A. L., López-Cervera, S. J., de la Rosa, C., Maldonado-Vega, M., Maldonado-Santoyo, M., & Peralta-Hernández, J. M. (2014). Electrocoagulation process coupled with advance oxidation techniques to treatment of dairy industry wastewater. International Journal of Electrochemical Science, 9, 6103–6112.Google Scholar
  24. Wang, Y., Yu, J., Zhang, D., & Yang, M. (2014). Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone. Journal of Environmental Sciences, 26(3), 550–554.  https://doi.org/10.1016/S1001-0742(13)60409-X.CrossRefGoogle Scholar
  25. Wu, J., Gao, H., Yao, S., Chen, L., Gao, Y., & Zhang, H. (2015). Degradation of crystal violet by catalytic ozonation using Fe/activated carbon catalyst. Separation and Purification Technology, 147, 179–185.  https://doi.org/10.1016/j.seppur.2015.04.022.CrossRefGoogle Scholar
  26. Zhuang, H., Guo, J., & Hong, X. (2018). Advanced treatment of paper-making wastewater using catalytic ozonation with waste rice straw-derived activated carbon-supported manganese oxides as a novel and efficient catalyst. Polish Journal of Environmental Studies, 27(1), 451–457.  https://doi.org/10.15244/pjoes/74483.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Magno dos Santos Pereira
    • 1
  • Alisson Carraro Borges
    • 1
  • Fernanda Fernandes Heleno
    • 1
  • Lêda Rita D’Antonino Faroni
    • 1
  • Joaquim Carlos Gomes Esteves da Silva
    • 2
  1. 1.Department of Agricultural EngineeringFederal University of ViçosaViçosaBrazil
  2. 2.Department of Geosciences, Environment and Spatial PlanningUniversity of PortoPortoPortugal

Personalised recommendations