Effect of Individual/Co-culture of Native Phyllosphere Organisms to Enhance Dracaena sanderiana for Benzene Phytoremediation

  • W. Jindachot
  • C. Treesubsuntorn
  • P. Thiravetyan


Benzene-tolerant phyllosphere microorganisms isolated from Dracaena sanderiana were identified as Pantoea sp. B11 and Staphylococcus sp. B12. Inoculating D. sanderiana with these microorganisms growing under 70 and 348 mg/m3 of airborne benzene showed a higher benzene removal efficiency than D. sanderiana without inoculation. Under 348 mg/m3 of benzene, inoculating D. sanderiana with Staphylococcus sp. B12 can remove benzene higher than inoculating D. sanderiana with Pantoea sp. B11 and co-culture between Staphylococcus sp. B12 and Pantoea sp. B11. In addition, individual Staphylococcus sp. B12 had higher ability to bio-remediate benzene than individual Pantoea sp. B11 and co-culture. Staphylococcus sp. B12 can also produce high indole-3-acetic acid (IAA) and harbor 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, which can protect plant from the stress. Photosystem II activity and chlorophyll content of D. sanderiana were decreased clearly under exposure with a 348 mg/m3 of benzene. Inoculating D. sanderiana with Staphylococcus sp. B12 had significantly higher photosystem II activity and chlorophyll content than inoculating D. sanderiana with Pantoea sp. B11 and co-cultures. In co-culture inoculation, Pantoea sp. B11 inhibited growth of Staphylococcus sp. B12, which can probably decrease benzene removal efficiency. Application of Staphylococcus sp. B12 can enhance benzene phytoremediation efficiency in D. sanderiana and protect plant from benzene stress.


Benzene Dracaena sanderiana Pantoea sp. B11 Phyllosphere bacteria Staphylococcus sp. B12 



The authors would like to thank the financial support provided by the National Research Council of Thailand and King Mongkut’s University of Technology Thonburi through the “KMUTT 55th Anniversary Commemorative fund.”


  1. Ali, A. D. (2006). Toxicity effect of benzene on Azolla sp. In laboratory culture. Afican Journal of Natural Sciences, 9, 1–6.Google Scholar
  2. Ali, N., Sorkhoh, N., Salamah, S., Eliyas, M., & Radwan, S. (2012). The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. Journal of Environmental Management, 93, 113–120.CrossRefGoogle Scholar
  3. Andreolli, M., Lampis, S., Poli, M., Gullner, G., Bir, B., & Vallini, G. (2013). Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere, 92, 688–694.CrossRefGoogle Scholar
  4. Baker, N. R. (1991). A possible role for photosystem II in environmental perturbations of photosynthesis. Physiologia Plantarum, 81, 563–570.CrossRefGoogle Scholar
  5. Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., & Colpaert, J. V. (2004). Engineered endophytic bacteria improve phytoremediation of water soluble, volatile, organic pollutants. Nature Biotechnology, 22, 583–588.CrossRefGoogle Scholar
  6. Boraphech, P., & Thiravetyan, P. (2015). Removal of trimethylamine (fishy odor) by C3 and CAM plants. Environmental Science and Pollution Research, 22, 11543–11557.CrossRefGoogle Scholar
  7. Byers, H. K., Stackebrandt, E., Hayward, C., & Blackall, L. L. (1998). Molecular investigation of a microbial mat associated with the great artesian basin. FEMS Microbiology Ecology, 25, 391–403.CrossRefGoogle Scholar
  8. Clardy, J., Fischbach, M. A., & Walsh, C. T. (2006). New antibiotics from bacterial natural products. Nature Biotechnology, 24, 1541–1550.CrossRefGoogle Scholar
  9. Daszkowska-Golec, A., & Szarejko, I. (2013). Open or close the gate—stomata action under the control of phytohormones in drought stress conditions. Frontiers in Plant Science, 4, 138.CrossRefGoogle Scholar
  10. Doty, S. L. (2008). Tansley review: enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist, 179, 318–333.CrossRefGoogle Scholar
  11. Germaine, K. J., Liu, X., Cabellos, G. G., Hogan, J. P., Ryan, D., & Dowling, D. N. (2006). Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiology Ecology, 57, 302–310.CrossRefGoogle Scholar
  12. Germaine, K. J., Keogh, E., Ryan, D., & Dowling, D. N. (2009). Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiology Letters, 296, 226–234.CrossRefGoogle Scholar
  13. Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indolacetic acid. Plant Physiology, 26, 192–195.CrossRefGoogle Scholar
  14. Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M., & Revah, S. (2008). Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnology Advances, 26, 398–410.CrossRefGoogle Scholar
  15. James, C. A., & Strand, S. E. (2009). Phytoremediation of small organic contaminants using transgenic plants. Current Opinion in Biotechnology, 20, 237–241.CrossRefGoogle Scholar
  16. Jin, M., Liu, L., Wright, S. A., Beer, S. V., & Clardy, J. (2003a). Structural and functional analysis of pantocin A: an antibiotic from Pantoea agglomerans discovered by heterologous expression of cloned genes. Angewandte Chemie International Edition, 42, 2898–2901.CrossRefGoogle Scholar
  17. Jin, M., Wright, S. A., Beer, S. V., & Clardy, J. (2003b). The biosynthetic gene cluster of Pantocin a provides insights into biosynthesis and a tool for screening. Angewandte Chemie International Edition, 42, 2902–2905.CrossRefGoogle Scholar
  18. Johnston-Monje, D., & Raizada, M. N. (2011). Plant and endophyte relationships: nutrient management. Comprehensive Biotechnology, 4, 713–727.CrossRefGoogle Scholar
  19. Khaksar, G., Treesubsuntorn, C., & Thiravetyan, P. (2016a). Endophytic Bacillus cereus ERBP-Clitoria ternatea interactions: potentials for the enhancement of gaseous formaldehyde removal. Environmental and Experimental Botany, 126, 10–20.CrossRefGoogle Scholar
  20. Khaksar, G., Treesubsuntorn, C., & Thiravetyan, P. (2016b). Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: potentials and challenges for airborne formaldehyde removal. Plant Physiology and Biochemistry, 107, 326–336.CrossRefGoogle Scholar
  21. Khaksar, G., Siswanto, D., Treesubsuntorn, C., & Thiravetyan, P. (2016c). Euphorbia milii-endophytic bacteria interactions affects hormonal levels of the native host differently under various airborne pollutants. Molecular Plant-Microbe Interactions, 29(9), 663–673.CrossRefGoogle Scholar
  22. Khaksar, G., Treesubsuntorn, C., & Thiravetyan, P. (2017). Euphorbia milii-native bacteria interactions under airborne formaldehyde stress: effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels. Plant Physiology and Biochemistry, 111, 284–294.CrossRefGoogle Scholar
  23. Khan, S., Afzal, M., Iqbal, S., & Khan, Q. M. (2013). Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90, 1317–1332.CrossRefGoogle Scholar
  24. Kotan, R., Dikbas, N., & Bostan, H. (2009). Biological control of post harvest disease caused by Aspergillus flavus on stored lemon fruits. African Journal of Biotechnology, 8(2), 209–214.Google Scholar
  25. Kvesitadze, E., Sadunishvili, T., & Kvesitadze, G. (2009). Mechanisms of organic contaminants uptake and degradation in plants. Engineering and Technology, 55, 458–468.Google Scholar
  26. Liu, Y., Mub, Y., Zhub, Y., Dinga, H., & Arens, N. (2007). Which ornamental plant species effectively remove benzene from indoor air? Atmospheric Environment, 41, 650–654.CrossRefGoogle Scholar
  27. Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29, 248–258.CrossRefGoogle Scholar
  28. Moore, F. P., Barac, T., Borremans, B., Oeyen, L., Vangronsveld, J., van der Lelie, D., Campbell, C. D., & Moore, E. R. B. (2006). Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Systematic and Applied Microbiology, 29(7), 539–556.CrossRefGoogle Scholar
  29. Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiology, 69, 1376–1381.CrossRefGoogle Scholar
  30. Occupational Safety and Health Administrations (OSHA). (2012). Benzene.
  31. Orwell, R. L., Wood, R. A., Burchett, M. D., Tarran, J., & Torpy, F. (2006). The potted-plant microcosm substantially reduces indoor air VOC pollution: II. Laboratory study. Water, Air, and Soil Pollution, 177, 59–80.CrossRefGoogle Scholar
  32. Pollution Control Department (PCD). (2009). Development of Environmental and Emission Standards of Volatile Organic Compounds (VOCs) in Thailand. Bangkok, Thailand. Accessed 16 Feb 2018.
  33. Rajkumar, M., Ae, N., & Freitas, H. (2009). Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 77, 153–160.CrossRefGoogle Scholar
  34. Sheng, X., Chen, X., & He, L. (2008). Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. International Biodeterioration and Biodegradation, 62, 88–95.CrossRefGoogle Scholar
  35. Sorkhoh, N. A., Al-Mailem, D. M., Ali, N., Al-Awadhi, H., Salamah, S., Eliyas, M., & Radwan, S. S. (2011). Bioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (Cynodon sp.) and broad bean (Vicia faba) leaves. International Biodeterioration and Biodegradation, 65, 797–802.CrossRefGoogle Scholar
  36. Sriprapat, W., & Thiravetyan, P. (2013). Phytoremediation of BTEX from indoor air by Zamioculcas zamiifolia. Water, Air & Soil Pollution, 224, 1482.CrossRefGoogle Scholar
  37. Taghavi, S., Barac, T., Greenberg, B., Borremans, B., Vangronsveld, J., & Van der Lelie, D. (2005). Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Applied and Environmental Microbiology, 71, 8500–8505.CrossRefGoogle Scholar
  38. Taoufik, J., Zeroual, Y., Moutaouakkil, A., Moussaid, S., Dzairi, F. Z., Talbi, M., Hammoumi, A., Belghmi, K., Lee, K., Loutfi, M., & Blaghen, M. (2004). Aromatic hydrocarbons removal by immobilized bacteria (Pseudomonas sp., Staphylococcus sp.) in fluidized bed bioreactor. Annals of Microbiology, 54(2), 189–200.Google Scholar
  39. Treesubsuntorn, C., & Thiravetyan, P. (2012). Removal of benzene from indoor air by Dracaena sanderiana: effect of wax and stomata. Atmospheric Environment, 57, 317–321.CrossRefGoogle Scholar
  40. Treesubsuntorn, C., Suksabye, P., Weangjun, S., Pawana, F., & Thiravetyan, P. (2013). Benzene adsorption by plant leaf materials: Effect of quantity and composition of wax. Water Air Soil Pollution, 224, 1736.CrossRefGoogle Scholar
  41. Ugrekhelidze, D., Korte, F., & Kvesitadz, G. (1997). Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicology and Environmental Safety, 37, 24–29.CrossRefGoogle Scholar
  42. Weyens, N., van der Lelie, D., Artois, T., Smeets, K., Taghavi, S., Newman, L., Carleer, R., & Vangronsveld, J. (2009). Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environmental Science and Technology, 43, 9413–9418.CrossRefGoogle Scholar
  43. Wolverton, B. C., Johnson, A., & Bounds, K. (1989). Interior landscape plants for indoor air pollution abatement. Final report. USA: NASA Stennis Space Centre MS.Google Scholar
  44. Zurbriggen, M. D., Carrillo, N., Tognetti, V. B., Melzer, M., Peisker, M., Hause, B., & Hajirezaei, M. R. (2009). Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. Plant Journal, 60(6), 962–973.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • W. Jindachot
    • 1
  • C. Treesubsuntorn
    • 2
  • P. Thiravetyan
    • 1
  1. 1.School of Bioresources and TechnologyKing Mongkut’s University of Technology ThonburiBangkokThailand
  2. 2.Pilot Plant Development and Training InstituteKing Mongkut’s University of TechnologyBangkokThailand

Personalised recommendations