Advertisement

Discovering Metal-Tolerant Endophytic Fungi from the Phytoremediator Plant Phragmites

  • Carrie Siew Fang Sim
  • Yuen Lin Cheow
  • Si Ling Ng
  • Adeline Su Yien Ting
Article
  • 98 Downloads

Abstract

Fifteen endophytic isolates were recovered from the phytoremediator plant Phragmites. Phylogenetic analysis revealed they were primarily from the class Sordariomycetes and Dothiodiomycetes. Most of the endophytes in Sordariomycetes were from the orders Diaporthales (six isolates, e.g., Diaporthe, Phomopsis), Hypocreales (two isolates, e.g., Gliomastix, Trichoderma), and Xylariales (one isolate, e.g., Arthrinium), while members from Dothideomycetes were from the order Pleosporales (six isolates, e.g., Bipolaris, Curvularia, Microsphaeropsis, Saccharicola). The endophytes demonstrated varying responses to the metals (Al3+, Cu2+, Zn2+, Pb2+, and Cd2+) and concentrations (10, 25, 50, 100, and 200 mg L−1) tested, with isolates of Dothideomycetes predominantly more tolerable to metals (80–97% tolerance) than Sordariomycetes (73–90% tolerance). Pb2+ was the least harmful towards the endophytes, while Al3+ appeared to be highly toxic with mean tolerable range (TR) of > 200 and 25–50 mg L−1, respectively. Endophytes thriving in toxic metals may further be applied for biocontrol, bioremediation, or growth-promoting purposes in metal-contaminated areas.

Keywords

Endophytes Metal tolerance Phragmites Phylogenetic analysis Phytoremediator 

Notes

Acknowledgements

The authors are grateful to Aw Yoong Kit for his guidance in constructing the phylogenetic tree.

Funding Information

This work is conducted using facilities by Monash University Malaysia. The first author is also a recipient of the PhD scholarship by Monash University Malaysia.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Agamuthu, P., & Said, N. A. A. (2009). Physico-chemical treatment of Bukit Tagar sanitary landfill leachate using P-Floc775 and ferric chloride. Malaysian Journal of Science, 28, 187–195.Google Scholar
  2. Almeida, T. T., Orlandelli, R. C., Azevedo, J. L., & Pamphile, J. A. (2015). Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) (Pontederiaceae) native to the upper Paraná River floodplain, Brazil. Genetics and Molecular Research, 14, 4920–4931.CrossRefGoogle Scholar
  3. Anand, P., Isar, J., Saran, S., & Saxena, R. K. (2006). Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 97, 1018–1025.CrossRefGoogle Scholar
  4. Angelini, P., Rubini, A., Gigante, D., Reale, L., Pagiotti, R., & Venanzoni, R. (2012). The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecology, 5, 683–693.CrossRefGoogle Scholar
  5. Bonanno, G., & Giudice, R. L. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639–645.CrossRefGoogle Scholar
  6. Botella, L., & Diez, J. J. (2011). Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Diversity, 47, 9–18.CrossRefGoogle Scholar
  7. Chow, Y. Y., & Ting, A. S. Y. (2015). Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. Journal of Advanced Research, 6, 869–876.CrossRefGoogle Scholar
  8. Clarke, B. B., White, J. F. J., Hurley, R. H., Torres, M. S., Sun, S., & Huff, D. R. (2006). Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Disease, 90, 994–998.CrossRefGoogle Scholar
  9. Clay, K., Shearin, Z. R. C., Bourke, K. A., Bickford, W. A., & Kowalski, K. P. (2016). Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes. Biological Invasions, 18, 2703–2716.CrossRefGoogle Scholar
  10. Cotton, F. A., & Wilkinson, G. (1988). Advanced inorganic chemistry. New York: John Wiley and Sons.Google Scholar
  11. Crozier, J., Thomas, S. E., Aime, M. C., Evans, H. C., & Holmes, K. A. (2006). Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathology, 55, 783–791.CrossRefGoogle Scholar
  12. Davis, A. T., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37, 4311–4330.CrossRefGoogle Scholar
  13. Drasch, G. A. (1983). An increase of cadmium body burden for this century—an investigation on human tissues. Science of the Total Environment, 26, 111–119.CrossRefGoogle Scholar
  14. Dunbabin, J. S., & Bowmer, K. H. (1992). Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment, 111, 151–168.CrossRefGoogle Scholar
  15. Errasquín, E. L., & Vázquez, C. (2003). Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere, 50, 137–143.CrossRefGoogle Scholar
  16. Farr, D. F., Castlebury, L. A., & Rossman, A. Y. (2002). Morphological and molecular characterization of Phomopsis vaccinii and additional isolates of Phomopsis from blueberry and cranberry in the eastern United States. Mycologia, 94, 494–504.CrossRefGoogle Scholar
  17. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  18. Freitas, M. O., Abilhoa, V., & da Costa, S. G. H. (2011). Feeding ecology of Lutjanus analis (Teleostei: Lutjanidae) from Abrolhos Bank, eastern Brazil. Neotropical Ichthyology, 9, 411–418.CrossRefGoogle Scholar
  19. Gazis, R., Rehner, S., & Chaverri, P. (2011). Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Molecular Ecology, 20, 3001–3013.CrossRefGoogle Scholar
  20. Gorbushina, A. A., Kotlova, E. R., & Sherstneva, O. A. (2008). Cellular responses of microcolonial rock fungi to long-term dessication and subsequent rehydration. Studies in Mycology, 61, 91–97.CrossRefGoogle Scholar
  21. Guillén, Y., & Machuca, A. (2008). The effect of copper on the growth of wood-rotting fungi and a blue-stain fungus. World Journal of Microbiology and Biotechnology, 24, 31–37.CrossRefGoogle Scholar
  22. Khan, A. R., Ullah, I., Waqas, M., Park, G. S., Khan, A. L., Hong, S. J., Ullah, R., Jung, B. K., Park, C. E., Ur-Rehman, S., Lee, I. J., & Shin, J. H. (2017). Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicology and Environmental Safety, 136, 180–188.CrossRefGoogle Scholar
  23. Kimmons, C. A., Gwinn, K. D., & Bernard, E. C. (1990). Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Disease, 74, 757–761.CrossRefGoogle Scholar
  24. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.CrossRefGoogle Scholar
  25. Lόpez-Archilla, A. I., González, A. E., Terrόn, M. C., & Amils, R. (2004). Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Canadian Journal of Microbiology, 50, 923–934.CrossRefGoogle Scholar
  26. Martin, H. (2008). Studies upon the copper fungicides. Annals of Applied Biology, 20, 342–363.CrossRefGoogle Scholar
  27. Matthew, P., Austin, R. D., Varghese, S. S., & Manojkumar, A. D. (2015). Effect of copper-based fungicide (bordeaux mixture) spray on the total copper content of areca nut: implications in increasing prevalence of oral submucous fibrosis. Journal of International Society of Preventive and Community Dentistry, 5, 283–289.CrossRefGoogle Scholar
  28. Meyerson, L. A., & Cronin, J. T. (2013). Evidence for multiple introductions of Phragmites australis to North America: detection of a new non-native haplotype. Biological Invasions, 14, 2605–2608.CrossRefGoogle Scholar
  29. Paraszkiewicz, K., Frycie, A., Slaba, M., & Dlugoński, J. (2007). Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence. Biometals, 20, 797–805.CrossRefGoogle Scholar
  30. Rao, H. C. Y., Baker, S., Rakshith, D., & Satish, S. (2015). Molecular profiling and antimicrobial potential of endophytic Gliomastix polychroma CLB32 inhabiting Combretum latifolium Blume. Mycology, 6, 176–181.CrossRefGoogle Scholar
  31. Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J., & Henson, J. M. (2002). Thermotolerance generated by plant/fungal symbiosis. Science.  https://doi.org/10.1126/science.1078055.
  32. Rhee, Y. J., Hillier, S., & Gadd, G. M. (2012). Lead transformation to pyromorphite by fungi. Current Biology, 2, 237–241.CrossRefGoogle Scholar
  33. Rodriguez, R. J., Henson, J., Van, V. E., Hoy, M., Wright, L., Beckwith, F., et al. (2008). Stress tolerance in plants via habitat-adapted symbiosis. ISME Journal, 2, 404–416.CrossRefGoogle Scholar
  34. Ruibal, C., Gueidan, C., Selbmann, L., Gorbushina, A. A., Crous, P. W., Groenewald, J. Z., Muggia, L., Gurbe, M., Isola, D., Schoch, C. L., Staley, J. T., Lutzoni, F., & de Hoog, G. S. (2009). Phylogeny of rock-inhabiting fungi related to Dothidiomycetes. Studies in Mycology, 64, 123–133.CrossRefGoogle Scholar
  35. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.Google Scholar
  36. Sauvêtre, A., & Schröder, P. (2015). Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2015.00083.
  37. Schoch, C. L., Crous, P. W., Groenewald, J. Z., Boehm, E. W. A., Burgess, T. I., de Gruyter, J., et al. (2009). A class-wide phylogenetic assessment of Dothidiomycetes. Studies in Mycology, 64, 1–15.CrossRefGoogle Scholar
  38. Schroeckh, V., Scherlach, K., Nützmann, H. W., Shelest, E., Schmidt-Heck, W., Schuemann, J., Martin, K., Hertweck, C., & Brakhage, A. A. (2009). Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proceedings of the National Academy of Sciences of the United States of America, 106, 14558–14563.CrossRefGoogle Scholar
  39. Sim, C. S. F., Tan, W. S., & Ting, A. S. Y. (2016). Endophytes from Phragmites for metal removal: evaluating their metal tolerance, adaptive behaviour and biosorption efficacy. Désalination and Water Treatment, 57, 6959–6966.CrossRefGoogle Scholar
  40. Sirikantaramas, S., Yamazaki, M., & Saito, K. (2009). A survival strategy: the coevolution of the camptothecin biosynthetic pathway and self-resistance mechanism. Phytochemistry, 70, 1894–1898.CrossRefGoogle Scholar
  41. Soares, M. A., Li, H. Y., Kowalski, K. P., Bergen, M., Torres, M. S., & White, J. F. (2016). Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biological Invasions, 18, 2689–2702.CrossRefGoogle Scholar
  42. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbour-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101, 11030–11035.CrossRefGoogle Scholar
  43. Ting, A. S. Y., & Jioe, E. (2016). In vitro assessment of antifungal activities of antagonistic fungi towards pathogenic Ganoderma boninense under metal stress. Biological Control, 96, 57–63.CrossRefGoogle Scholar
  44. Vepachedu, S. K. V. R. R., Akthar, N., & Mohan, P. M. (1997). Isolation of a cadmium tolerant Curvularia sp. from polluted effluents. Current Science, 73, 453–455.Google Scholar
  45. Weaver, L., Michels, H. T., & Keevil, C. W. (2010). Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Letters in Applied Microbiology, 50, 18–23.CrossRefGoogle Scholar
  46. Wirsel, S. G. R., Leibinger, W., Ernst, M., & Mendgen, K. (2001). Genetic diversity of fungi closely associated with common reed. New Phytologist, 149, 589–598.CrossRefGoogle Scholar
  47. Young, C. A., Felitti, S., & Shields, K. (2006). A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genetics and Biology, 43, 679–693.CrossRefGoogle Scholar
  48. Yuan, Z. L., Rao, L. B., Chen, Y. C., Zhang, C. L., & Wu, Y. G. (2011). From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biology, 115, 197–213.CrossRefGoogle Scholar
  49. Zotti, M., Piazza, S. D., Roccotiello, E., Lucchetti, G., Mariotti, M. G., & Marescotti, P. (2014). Microfungi in highly copper-contaminated soils from an abandoned Fe-cu sulphide mine: growth responses, tolerance and bioaccumulation. Chemosphere, 117, 471–476.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceMonash University MalaysiaSelangor Darul EhsanMalaysia
  2. 2.School of Chemical SciencesUniversity Sains Malaysia, USMPenangMalaysia

Personalised recommendations