The Fate of 15N Tracer in Waterlogged Peat Cores from Two Central European Bogs with Different N Pollution History

  • Martin Novak
  • Marketa Stepanova
  • Frantisek Buzek
  • Ivana Jackova
  • Jan Curik
  • Frantisek Veselovsky
  • Eva Prechova
  • Elena Antalova
  • Jarmila Brychnacova
  • Ivana Bufkova
  • Arnost Komarek


Under low nitrogen (N) input into rain-fed peat bogs, Sphagnum moss efficiently filters incoming N, preventing invasion of vascular plants and peat oxygenation. Elevated atmospheric N deposition, in combination with climatic warming, may cause retreat of bryophytes and degradation of peat deposits. There are concerns that higher emissions of greenhouse gases, accompanying peat thinning, will accelerate global warming. Breakthrough of deposited N below living moss has been quantified for two Central European peat bogs dominated by Sphagnum magellanicum. In the 1990s, the northern site, ZL, received three times more atmospheric N (> 40 kg ha−1 year−1) than the southern site, BS. Today, atmospheric N inputs at both sites are comparable (15 and 11 kg ha−1 year−1, respectively). Replicated peat cores were collected from the wet central segments of both study sites, 15N-NO3 tracer was applied on the moss surface, and the peat cores were incubated under water-logged conditions. After 40 weeks, the rate of downcore leaching of the 15N tracer was assessed. The recent history of high N pollution at ZL did not accelerate 15N penetration into deeper peat layers, relative to BS. At both sites, less than 3% of the 15N tracer reached the shallow depth of 9 cm. Analysis of control peat cores, along with a 210Pb chronology, revealed removal of the “excess” N from the ZL peat profiles prior to sampling. Following a decrease of atmospheric N pollution in the past two decades, efficient filtering of atmospheric N by Sphagnum at ZL has been renewed.


Nitrogen Pollution Sphagnum Peat bog Atmospheric deposition 15N tracer 



We thank Dr. Andrea Kucerova of the Botanical Institute of the Czech Academy of Sciences, Trebon, for a consultation on phosphorus cycling.

Funding Information

This work was funded by the Czech Science Foundation, Project No. 16-18079S to MN.

Supplementary material

11270_2018_3731_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)
11270_2018_3731_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 13 kb)


  1. Biester, H., Knorr, K. H., Schellekens, J., Basler, A., & Hermanns, Y. M. (2014). Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences, 11(10), 2691–2707.CrossRefGoogle Scholar
  2. Blodau, C., Basiliko, N., Mayer, B., & Moore, T. R. (2006). The fate of experimentally deposited nitrogen in mesocosms from two Canadian peatlands. Science of the Total Environment, 364, 215–228.CrossRefGoogle Scholar
  3. Bohdalkova, L., Curik, J., Kubena, A. A., & Buzek, F. (2013). Dynamics of methane fluxes from two peat bogs in the Ore Mountains, Czech Republic. Plant Soil Environment, 1, 14–21.Google Scholar
  4. Bohdalkova, L., Novak, M., Stepanova, M., Fottova, D., Chrastny, V., Mikova, J., & Kubena, A. A. (2014a). The fate of atmospherically derived Pb in Central European catchments: insights from spatial and temporal pollution gradients and Pb isotope ratios. Environmental Science & Technology, 48(8), 4336–4343.CrossRefGoogle Scholar
  5. Bohdalkova, L., Novak, M., Buzek, F., Kreisinger, J., Bindler, R., Pazderu, K., & Pacherova, P. (2014b). The response of a mid- and high latitude peat bog to predicted climate change: methane production in a 12-month peat incubation. Mitigation and Adaptation Strategies for Global Change, 19(7), 997–1010.CrossRefGoogle Scholar
  6. Bragazza, L., & Limpens, J. (2004). Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition. Global Biogeochemical Cycles, 18(4), GB4018.CrossRefGoogle Scholar
  7. Bragazza, L., Tahvanainen, T., Kutnar, L., Rydin, H., Limpens, J., Hajek, M., et al. (2004). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163(3), 609–616.CrossRefGoogle Scholar
  8. Bragazza, L., Limpens, J., Gerdol, R., Grosvernier, P., Hajek, M., Hajek, T., et al. (2005). Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Global Change Biology, 11(1), 106–114.CrossRefGoogle Scholar
  9. Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., et al. (2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19386–19389.CrossRefGoogle Scholar
  10. Breeuwer, A., Heijmans, M., Robroek, B. J. M., Limpens, J., & Berendse, F. (2008). The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos, 117(8), 1258–1268.CrossRefGoogle Scholar
  11. Broder, T., Blodau, C., Biester, H., & Knorr, K. H. (2012). Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences, 9(4), 1479–1491.CrossRefGoogle Scholar
  12. Core Team, R. (2017). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing Scholar
  13. Chiwa, M., Sheppard, L. J., Leith, I. D., Leeson, S. R., Tang, Y. S., & Cape, J. N. (2016). Sphagnum can ‘filter’ N deposition, but effects on the plant and pore water depend on the N form. Science of the Total Environment, 559, 113–120.CrossRefGoogle Scholar
  14. Clymo, R. S., Turunen, J., & Tolonen, K. (1998). Carbon accumulation in peatland. Oikos, 81, 368–388.CrossRefGoogle Scholar
  15. Dise, N. B., Ashmore, M., Belyazid, S., Bleeker, A., Bobbink, R., de Vries, W., et al. (2011). Nitrogen as threat to European terrestrial biodiversity. In M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, & B. Grizetti (Eds.), The European Nitrogen Assessment (pp. 463–494). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Dohnal, Z., Kunst, M., Mejstrik, V., Raucina, S., & Vydra, V. (1965). Czechoslovak Peatlands. Czechoslovakia: Czechoslovak Academy of Sciences.Google Scholar
  17. Erbanova, L., Novak, M., Fottova, D., & Dousova, B. (2008). Export of arsenic from forested catchments under easing atmospheric pollution. Environmental Science & Technology, 42(19), 7187–7192.CrossRefGoogle Scholar
  18. Esmeijer-Liu, A. J., Kurschner, W. M., Lotter, A. F., Verhoeven, J. T. A., & Goslar, T. (2012). Stable carbon and nitrogen isotopes in a peat profile are influenced by early stage diagenesis and changes in atmospheric CO2 and N deposition. Water Air and Soil Pollution, 223(5), 2007–2022.CrossRefGoogle Scholar
  19. Fisak, J., Tesar, M., Rezacova, D., Elias, V., Weignerova, V., & Fottova, D. (2002). Pollutant concentrations in fog and low cloud water at selected sites of the Czech Republic. Atmospheric Research, 64(1–4), 75–87.CrossRefGoogle Scholar
  20. Fottova, D. (1995). Regional evaluation of mass element fluxes - GEOMON network of small catchments. Environmental Monitoring and Assessment, 34(2), 215–221.CrossRefGoogle Scholar
  21. Fottova, D. (2003). Trends in sulphur and nitrogen deposition fluxes in the GEOMON network, Czech Republic, between 1994 and 2000. Water Air and Soil Pollution, 150(1–4), 73–87.CrossRefGoogle Scholar
  22. Fottova, D., & Skorepova, I. (1998). Changes in mass element fluxes and their importance for critical loads: GEOMON network, Czech Republic. Water Air and Soil Pollution, 105(1–2), 365–376.CrossRefGoogle Scholar
  23. Franzes, A. J., & Loiseau, P. (1999). The fate of mineral nitrogen in a fen with Sphagnum fallax klinggr. and Carex rostrata stokes (Massif central, France). Canadian Journal of Botany, 77, 1136–1143.Google Scholar
  24. Fraser, C. J. D., Roulet, N. T., & Lafleur, M. (2001). Groundwater flow patterns in a large peatland. Journal of Hydrology, 246(1–4), 142–154.CrossRefGoogle Scholar
  25. Fritz, C., Lamers, L. P. M., Riaz, M., van den Berg, L. J. L., & Elzenga, T. J. T. M. (2014). Sphagnum mosses - masters of efficient N-uptake while avoiding intoxication. PLoS One, 9(1), 1–11.CrossRefGoogle Scholar
  26. Gabor, R. S., Hall, S. J., Eiriksson, D. P., Jameel, Y., Millington, M., Stout, T., et al. (2017). Persistent urban influence on surface water quality via impacted groundwater. Environmental Science & Technology, 51(17), 9477–9487.CrossRefGoogle Scholar
  27. Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Sitzinger, S. P., et al. (2004). Nitrogen cycles: past, present, future. Biogeochemistry, 70, 153–226.CrossRefGoogle Scholar
  28. Gorham, E. (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182–195.CrossRefGoogle Scholar
  29. Granath, G., Limpens, J., Posch, M., Mücher, S., & de Vries, W. (2014). Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity and European peatlands. Environmental Pollution, 187, 73–80.CrossRefGoogle Scholar
  30. Harmens, H., Schnyder, E., Thoni, L., Cooper, D. M., Mills, G., Leblond, S., et al. (2014). Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. Environmental Pollution, 194, 50–59.CrossRefGoogle Scholar
  31. Heijmans, M. M. P. D., Klees, H., de Visser, W., & Berendse, F. (2002). Effects of increased nitrogen deposition on the distribution of 15N-labeled nitrogen between Sphagnum and vascular plants. Ecosystems, 5, 500–508.CrossRefGoogle Scholar
  32. Högberg, M. (1997). Tansley review no. 95. 15N abundance in soil-plant system. New Phytologist, 137, 179–203.CrossRefGoogle Scholar
  33. Hunova, I., Maznova, J., & Kurfurst, P. (2014). Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests. Environmental Pollution, 184, 668–675.CrossRefGoogle Scholar
  34. Inglett, P. W., Reddy, K. R., Newman, S., & Lorenzen, B. (2007). Increased soil stable nitrogen isotopic ratio following phosphorus enrichment: historical patterns and tests of two hypotheses in a phosphorus-limited wetland. Oecologia, 153(1), 99–109.CrossRefGoogle Scholar
  35. Jirousek, M., Hajek, M., & Bragazza, L. (2011). Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe. Environmental Pollution, 159(2), 585–590.CrossRefGoogle Scholar
  36. Johnson, D. W., & Lindberg, S. E. (Eds.). (1992). Atmospheric deposition and forest nutrient cycling. Berlin Heidelberg New York: Springer.Google Scholar
  37. Jones, M. C., Peteet, D. M., & Sambrotto, R. (2010). Late-glacial and Holocene δ15N and δ13C variation from a Kenai Peninsula, Alaska peatland. Palaeogeography Palaeoclimatology Palaeoecology, 293(1–2), 132–143.CrossRefGoogle Scholar
  38. Kalbitz, K., & Geyer, S. (2002). Different effects of peat degradation on dissolved organic carbon and nitrogen. Organic Geochemistry, 33(3), 319–326.CrossRefGoogle Scholar
  39. Kohzu, A., Matsui, K., Yamada, T., & Sugimoto, A. (2003). Significance of rooting depth in mire plants: evidence from natural 15N abundance. Ecological Research, 18(3), 257–266.CrossRefGoogle Scholar
  40. Kopacek, J., & Posch, M. (2011). Anthropogenic nitrogen emissions during the Holocene and their possible effect on remote ecosystems. Global Biogeochemical Cycles, 25(GB2017), 1–16.Google Scholar
  41. Kopacek, J., & Vesely, J. (2005). Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmospheric Environment, 39(12), 2179–2188.CrossRefGoogle Scholar
  42. Kopacek, J., Vesely, J., & Stuchlik, E. (2001). Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850–2000). Hydrology and Earth System Sciences, 5(3), 391–405.CrossRefGoogle Scholar
  43. Kruger, J. P., Leifeld, J., Glatzel, S., Szidat, S., & Alewell, C. (2015). Biogeochemical indicators of peatland degradation—a case study of a temperate bog in northern Germany. Biogeosciences, 12(10), 2861–2871.CrossRefGoogle Scholar
  44. Kuhry, P., & Vitt, D. H. (1996). Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology, 77, 271–275.CrossRefGoogle Scholar
  45. Lamers, L. P. M., Bobbing, R., & Roelofs, J. G. M. (2000). Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6, 583–586.CrossRefGoogle Scholar
  46. Larmola, T., Leppanen, S. M., Tuitila, E.-S., Aarva, M., Merila, P., Fritze, H., & Tiirola, M. (2014). Methanotrophy induces nitrogen fixation during peatland development. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 734–739.CrossRefGoogle Scholar
  47. Li, Y. H., & Vitt, D. H. (1997). Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. Ecoscience, 4, 106–116.CrossRefGoogle Scholar
  48. Limpens, J., Berendse, F., & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytologist, 157, 339–347.CrossRefGoogle Scholar
  49. Limpens, J., Berendse, F., & Klees, H. (2004). How P affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793–804.CrossRefGoogle Scholar
  50. Manninen, S., Kivimäki, S., Leith, I. D., Leeson, S. R., & Sheppard, L. J. (2016). Nitrogen deposition does not enhance Sphagnum decomposition. Science of the Total Environment, 571, 314–322.CrossRefGoogle Scholar
  51. Mihaljevic, M., Zuna, M., Ettler, V., Chrastny, V., Sebek, O., Strnad, L., & Kyncl, T. (2008). A comparison of tree rings and peat deposit geochemical archives in the vicinity of a lead smelter. Water Air and Soil Pollution, 188(1–4), 311–321.CrossRefGoogle Scholar
  52. Mihaljevic, M., Zuna, M., Ettler, V., Sebek, O., Strnad, L., & Golias, V. (2006). Lead fluxes, isotopic and concentration profiles in a peat deposit near a lead smelter (Pribram, Czech Republic). Science of the Total Environment, 372(1), 334–344.CrossRefGoogle Scholar
  53. Nadelhoffer, K., & Fry, B. (1988). Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal, 52, 1633–1640.CrossRefGoogle Scholar
  54. Nadelhoffer, K., Shaver, G., Fry, B., Giblin, A., Johnson, L., & McKane, R. (1996). N-15 natural abundances and N use by tundra plants. Oecologia, 107(3), 386–394.CrossRefGoogle Scholar
  55. Nordbakken, J. F., Ohlson, M., & Högberg, P. (2003). Boreal bog plants: Nitrogen sources and uptake of recently deposited nitrogen. Environmental Pollution, 126, 191–200.CrossRefGoogle Scholar
  56. Novak, M., Bottrell, S. H., Fottova, D., Buzek, F., Groscheova, H., & Zak, K. (1996). Sulfur isotope signals in forest soils of Central Europe along an air-pollution gradient. Environmental Science & Technology, 30(12), 3473–3476.CrossRefGoogle Scholar
  57. Novak, M., Buzek, F., & Adamova, M. (1999). Vertical trends in δ13C, δ15N and δ34S ratios in bulk Sphagnum peat. Soil Biology & Biogeochemistry, 31(9), 1343–1346.CrossRefGoogle Scholar
  58. Novak, M., Buzek, F., Jackova, I., Stepanova, M., & Prechova, E. (2017). Isotope constraints on microbial N2-fixation in ombrotrophic peat bogs. Annual Report, Czech Geological Survey, Prague. Grant project no. 16-18079S (Czech Science Foundation).Google Scholar
  59. Novak, M., Emmanuel, S., Vile, M. A., Erel, Y., Veron, A., Paces, T., et al. (2003). Origin of lead in eight Central European peat bogs determined from isotope ratios, strengths and operation times of regional pollution sources. Environmental Science & Technology, 37, 437–445.CrossRefGoogle Scholar
  60. Novak, M., Erel, Y., Zemanova, L., Bottrell, S. H., & Adamova, M. (2008). A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British Isles and the Czech Republic. Atmospheric Environment, 42, 8997–9006.CrossRefGoogle Scholar
  61. Novak, M., Gebauer, G., Thoma, M., Curik, J., Stepanova, M., Jackova, I., et al. (2015b). Denitrification at two nitrogen-polluted, ombrotrophic Sphagnum bogs in Central Europe: insights from porewater N2O-isotope profiles. Soil Biology & Biogeochemistry, 81, 48–57.CrossRefGoogle Scholar
  62. Novak, M., Jackova, I., Curik, J., Stepanova, M., Veselovsky, F., Buzek, F., et al. (2016). Contrasting δ15N values of atmospheric deposition and Sphagnum peat bogs: N fixation as a possible cause. Ecosystems, 19, 1037–1050.CrossRefGoogle Scholar
  63. Novak, M., Stepanova, M., Jackova, I., Vile, M. A., Wieder, R. K., Buzek, F., et al. (2014). Isotopic evidence for nitrogen mobility in peat bogs. Geochimica et Cosmochimica Acta, 133, 351–361.CrossRefGoogle Scholar
  64. Novak, M., Veselovsky, F., Curik, J., Stepanova, M., Fottova, D., Prechova, E., & Myska, O. (2015a). Nitrogen input into Sphagnum bogs via horizontal deposition: an estimate for N-polluted high-elevation sites. Biogeochemistry, 123(1–2), 307–312.CrossRefGoogle Scholar
  65. Novak, M., Wieder, R. K., & Schell, W. R. (1994). Sulfur during early diagenesis in Sphagnum peat: insights from δ34S ratio profiles in 210Pb-dated peat cores. Limnology and Oceanography, 39(5), 1172–1185.CrossRefGoogle Scholar
  66. Novak, M., Zemanova, L., Buzek, F., Jackova, I., Adamova, M., Komarek, A., et al. (2010). The effect of a reciprocal peat transplant between two contrasting Central European sites on C cycling and C isotope ratios. Biogeosciences, 7(3), 921–932.CrossRefGoogle Scholar
  67. Oulehle, F., Chuman, T., Hruska, J., Kram, P., McDowell, W. H., Myska, O., et al. (2017). Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry, 132(3), 251–272.CrossRefGoogle Scholar
  68. Oulehle, F., Evans, C. D., Hofmeister, J., Krejci, R., Tahovska, K., Persson, T., et al. (2011). Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Global Change Biology, 17(10), 3115–3129.CrossRefGoogle Scholar
  69. Oulehle, F., Kopacek, J., Chuman, T., Cernohous, V., Hunova, I., Hruska, J., et al. (2016). Predicting sulphur and nitrogen deposition using a simple statistical method. Atmospheric Environment, 140, 456–468.CrossRefGoogle Scholar
  70. Pinheiro, J. C., & Bates, D. (2000). Mixed-effects models in S and S-Plus. New York: Springer-Verlag.CrossRefGoogle Scholar
  71. Pinheiro, J. C., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2016). Nlme: linear and nonlinear mixed effect models. R package version, 3, 1–128 Scholar
  72. Pinsonneault, A. J., Moore, T. R., & Roulet, N. T. (2016). Effects of long-term fertilization on peat stoichiometry and associated microbial enzyme activity in an ombrotrophic bog. Biogeochemistry, 129(1–2), 149–164.CrossRefGoogle Scholar
  73. Sheppard, L. J., Leith, I. D., Leeson, S. R., van Dijk, N., Field, C., & Levy, P. (2013). Fate of N in a peatland, Whim bog: immobilization in the vegetation and peat, leakage into pore water and losses as N2 depend on the form of N. Biogeosciences, 10, 149–160.CrossRefGoogle Scholar
  74. Song, Y., Song, C., Meng, H., Swarzenski, C. M., Wang, X., & Tan, W. (2017). Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China. Ecological Engineering, 100, 175–185.CrossRefGoogle Scholar
  75. Sorrell, B. K., Chague-Goff, C., Basher, L. M., & Partridge, T. R. (2011). N:P ratios, δ15N fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an oligotrophic wetland complex. Aquatic Botany, 94(2), 93–101.CrossRefGoogle Scholar
  76. Tfaily, M. M., Cooper, W. T., Kostka, J. E., Chanton, P. R., Schadt, C. W., Hanson, P. J., et al. (2014). Organic matter transformations in the peat column at Marcell Experimental Forest: humification and vertical stratification. Journal of Geophysical Research – Biogeosciences, 119(4), 661–675.CrossRefGoogle Scholar
  77. Van den Elzen, E., Kox, M. A. R., Harpenslager, S. F., Hensgens, G., Fritz, C., Jetten, M. S. M., et al. (2017). Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth. Biogeosciences, 14(5), 1111–1122.CrossRefGoogle Scholar
  78. Vile, M. A., Wieder, R. K., & Novak, M. (2000). 200 years of Pb deposition throughout the Czech Republic: patterns and sources. Environmental Science & Technology, 34, 12–21.CrossRefGoogle Scholar
  79. Vile, M. A., Wieder, R. K., Zivkovic, T., Scott, K. D., Vitt, D. H., Hartsock, J. A., et al. (2014). N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry, 121(2), 317–328.CrossRefGoogle Scholar
  80. Wieder, R. K., & Vitt, D. H. (Eds.). (2006). Boreal peatland ecosystems. Berlin Heidelberg New York: Springer.Google Scholar
  81. Williams, B. L., Silcock, D. J., & Young, M. (1999). Seasonal dynamics of N in two Sphagnum moss species and the underlying peat treated with 15NH4 15NO3. Biogeochemistry, 45, 285–302.Google Scholar
  82. Xing, Y., Bubier, J., Moore, T. R., Murphy, M., Basiliko, N., Wendel, S., & Blodau, C. (2011). The fate of 15N-nitrate in a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium fertilization. Biogeochemistry, 103, 281–296.CrossRefGoogle Scholar
  83. Zając, K., & Blodau, C. (2016). The fate of 15N-nitrate in mesocosms from five European peatlands differing in long-term nitrogen deposition rate. Biogeosciences, 13, 707–722.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Martin Novak
    • 1
  • Marketa Stepanova
    • 1
  • Frantisek Buzek
    • 1
  • Ivana Jackova
    • 1
  • Jan Curik
    • 1
  • Frantisek Veselovsky
    • 1
  • Eva Prechova
    • 1
  • Elena Antalova
    • 2
  • Jarmila Brychnacova
    • 2
  • Ivana Bufkova
    • 3
  • Arnost Komarek
    • 4
  1. 1.Department of Environmental Geochemistry and BiogeochemistryCzech Geological SurveyPrague 5Czech Republic
  2. 2.Accredited Laboratories, Czech Geological SurveyPrague 5Czech Republic
  3. 3.Sumava National Park AdministrationVimperkCzech Republic
  4. 4.Department of Probability and Mathematical Statistics, Faculty of Mathematics and PhysicsPrague 8Czech Republic

Personalised recommendations