Preparation of a Phosphate-Modified Flower-Like α-FeOOH Composite and Its Application for Aqueous U(VI) Removal

  • Xiaowen Zhang
  • Tianjiao Jiang
  • Chao Xie
  • Ying Peng
  • Mi Li
  • Yongming Zhong


Goethite is a stable and widespread mineral in soil, which affects the transportation and immobilization of heavy metals in soil. Here, the three-dimensional flower-like goethite (TDFLG) was synthesized by refluxing precipitation method. The modified three-dimensional flower-like goethite (MTDFLG) was prepared by NaH2PO4 with dipping method. The obtained samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, N2 adsorption–desorption (BET), and X-ray diffraction (XRD). SEM images showed that the modification of phosphate had no major changes on the morphology of the original sample and the morphology of MTDFLG after adsorbed U(VI) had clearly change. For the goethite and modified goethite, the BET-specific surface area was 229.96 and 203.17 m2/g, respectively. Moreover, the effects of adsorption time, sorbent dose, solution pH, and initial uranium concentration on the uranium adsorption behaviors were investigated using the two materials as adsorbent for the treatment of uranium-containing wastewater. The results showed that MTDFLG had better adsorption capacity than TDFLG on uranium. The increase in uranium removal on MTDFLG was due to the formation of ternary surface complexes (≡FePO4UO2). TDFLG and MTDFLG followed the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model, which indicated that uranium adsorption on TDFLG or MTDFLG is mainly based on chemisorption, and the maximum adsorption capacity of two adsorbents is 48.24 and 112.36 mg/g, respectively.


Uranium α-FeOOH Phosphate Sorption Mechanism 


Funding Information

This paper is supported by the double first class construct program of USC (2017SYL05), Hunan Provincial Innovation Foundation For Postgraduate (CX2016B454), and Scientific Research Fund of Hunan Provincial Education Department (15C1196).


  1. Bakatula, E. N., Molaudzi, R., Nekhunguni, P., & Tutu, H. (2017). The removal of arsenic and uranium from aqueous solutions by sorption onto iron oxide-coated zeolite (IOCZ). Water Air Soil & Pollution, 228, 1–14.CrossRefGoogle Scholar
  2. Bhalara, P. D., Punetha, D., & Balasubramanian, K. (2014). A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. Journal of Environmental Chemical Engineering, 2, 1621–1634.CrossRefGoogle Scholar
  3. Bjørklund, G., Albert, C. O., Chirumbolo, S., Selinus, O., & Aaseth, J. (2017). Recent aspects of uranium toxicology in medical geology. Environmental Research, 156, 526–533.CrossRefGoogle Scholar
  4. Cao, Q., Liu, Y. C., Wang, C. Z., & Cheng, J. S. (2013). Phosphorus-modified poly(styrene-co-divinylbenzene)–PAMAM chelating resin for the adsorption of uranium(VI) in aqueous. Journal of Hazardous Materials, 263(2), 311–321.CrossRefGoogle Scholar
  5. Chen, Y. H., & Li, F. A. (2010). Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. Journal of Colloid & Interface Science., 347(2), 277–281.CrossRefGoogle Scholar
  6. Chen, Y., Peng, J. D., Xiao, H., Peng, H. J., Bu, L. L., Pan, Z. Y., He, Y., Chen, F., Wang, X., & Li, S. Y. (2017). Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+and methyl orange removal from water. Applied Surface Science, 420, 773–781.CrossRefGoogle Scholar
  7. Cheng, T., Barnett, M. O., Roden, E. E., & Zhuang, J. L. (2004). Effects of phosphate on uranium(VI) adsorption to goethite-coated sand. Environmental Science and Technology, 38, 6059–6065.CrossRefGoogle Scholar
  8. Degueldre, C. (2017). Uranium as a renewable for nuclear energy. Progress in Nuclear Energy, 94, 174–186.CrossRefGoogle Scholar
  9. Guo, Y. H., & Zhang, Y. (1997). Preparation and surface chemistry characteristics of pure and coated acicular α-FeOOH particles. Materials Chemistry and Physics, 47, 211–216.CrossRefGoogle Scholar
  10. Guo, Z. J., Li, Y., & Wu, W. S. (2009). Sorption of U(VI) on goethite: effects of pH, ionic strength, phosphate, carbonate and fulvic acid. Applied Radiation and Isotopes, 67, 996–1000.CrossRefGoogle Scholar
  11. Hua, M., Zhang, S. J., Pan, B. C., Zhang, W. M., Lv, L., & Zhang, Q. X. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211–212, 317–331.CrossRefGoogle Scholar
  12. Li, H., Li, W., Zhang, Y. J., Wang, T. S., Wang, B., Xu, W., Jiang, L., Song, W. G., Shu, C. Y., & Wang, C. R. (2011). Chrysanthemum-like α-FeOOH microspheres produced by a simple green method and their outstanding ability in heavy metal ion removal. Journal of Materials Chemistry, 21(22), 7878–7881.CrossRefGoogle Scholar
  13. Liu, F., Jie, X. L., He, J. Z., Zhou, D. H., Xu, F. L., & Li, X. Y. (1997). Coordination forms and transformations of phosphate adsorbed by goethite surface on different pH. Acta Pedologica Sinica, 34(4), 367–374.Google Scholar
  14. Liu, H., Chen, T., & Frost, R. L. (2014). An overview of the role of goethite surfaces in the environment. Chemosphere, 103, 1–11.CrossRefGoogle Scholar
  15. Liu, Y., Liu, X., Zhao, Y., & Dionysiou, D. D. (2017). Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst. Applied Catalysis B: Environmental, 213, 74–86.CrossRefGoogle Scholar
  16. Mehta, V. S., Maillot, F., Wang, Z., Catalano, J. G., & Giammar, D. E. (2015). Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization. Water Research, 69, 307–317.CrossRefGoogle Scholar
  17. Morsy, A. M. A. (2015). Adsorptive removal of uranium ions from liquid waste solutions by phosphorylated chitosan. Environmental Technology & Innovation, 4, 299–310.CrossRefGoogle Scholar
  18. Ni, C. Y., Liu, S., Wang, H. L., Liu, H., & Chen, R. F. (2017). Studies on adsorption characteristics of Al-free and Al-substituted goethite for heavy metal ion Cr(VI). Water Air Soil Pollution, 228, 1–10.CrossRefGoogle Scholar
  19. Orabi, A. H., El-Sheikh, E. M., Saleh, W. H., Youssef, A. O., El-Kady, M. Y., & Shalaby, Z. M. (2016). Potentiality of uranium adsorption from wet phosphoric acid using amine-impregnated cellulose. Journal of Radiation Research and Applied Sciences, 9(2), 193–206.CrossRefGoogle Scholar
  20. Rahnemaie, R., Hiemstra, T., & Riemsdijk, W. H. V. (2007). Carbonate adsorption on goethite in competition with phosphate. Journal of Colloid and Interface Science, 315, 415–425.CrossRefGoogle Scholar
  21. Ren, X., Wang, S., Yang, S., & Li, J. (2009). Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. Journal of Radioanalytical & Nuclear Chemistry, 283, 253–259.CrossRefGoogle Scholar
  22. Sadeghi, S., Azhdari, H., Arabi, H., & Moghaddam, Z. A. (2012). Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. Journal of Hazardous Materials, 2, 208–216.CrossRefGoogle Scholar
  23. Salameh, S. I. Y., Khalili, F. I., & Al-Dujaili, A. H. (2017). Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: Evaluation of equilibrium, kinetic and thermodynamic data. International Journal of Mineral Processing, 168, 9–18.CrossRefGoogle Scholar
  24. Schierz, A., & Zänker, H. (2009). Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environmental Pollution, 157, 1088–1094.CrossRefGoogle Scholar
  25. Seshadri, B., Bolan, N. S., Choppala, G., Kunhikrishnan, A., Sanderson, P., Wang, H., Currie, L. D., Tsang, D. C. W., Ok, Y. S., & Kim, G. (2017). Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere, 184, 197–206.CrossRefGoogle Scholar
  26. Shan, X. L., Guo, X. T., Yin, Y. Y., Miao, Y., & Dong, H. (2017). Surface modification of graphene oxide by goethite with enhanced tylosin photocatalytic activity under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 420–427.CrossRefGoogle Scholar
  27. Sherman, D. M., Peacock, C. L., & Hubbard, C. G. (2008). Surface complexation of U(VI) on goethite (a-FeOOH). Geochimica et Cosmochimica Acta, 72, 298–310.CrossRefGoogle Scholar
  28. Singh, A., Ulrich, K. U., & Giammar, D. E. (2010). Impact of phosphate on U(VI) immobilization in the presence of goethite. Geochimica et Cosmochimica Acta, 74, 6324–6343.CrossRefGoogle Scholar
  29. Sprynskyy, M., Kowalkowski, T., Tutu, H., Cukrowska, E. M., & Buszewski, B. (2011). Adsorption performance of talc for uranium removal from aqueous solution. Chemical Engineering Journal, 171, 1185–1193.CrossRefGoogle Scholar
  30. Tiya-Djowe, A., Laminsi, S., Noupeyi, G. L., & Gaigneaux, E. M. (2015). Non-thermal plasma synthesis of sea-urchin like -FeOOH for the catalytic oxidation of Orange II in aqueous solution. Applied Catalysis B: Environmental, 176, 99–106.CrossRefGoogle Scholar
  31. Wang, B., Wu, H. B., Yu, L., Xu, R., Lim, T. T., & Lou, X. W. (2012). Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Advanced Materials, 24(8), 1111–1116.CrossRefGoogle Scholar
  32. Wang, F., Liu, Q., Li, R., Li, Z., Zhang, H., Liu, L., & Wang, J. (2016). Selective adsorption of uranium(VI) onto prismatic sulfides from aqueous solution. Colloids & Surfaces A Physicochemical & Engineering Aspects, 490, 215–221.CrossRefGoogle Scholar
  33. Wei, Y., Zhang, L., Shen, L., & Hua, D. (2016). Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorption from aqueous solution. Journal of Molecular Liquids, 221, 1231–1236.Google Scholar
  34. Xu, J. G., Li, Y. Q., Yuan, B. L., Cui, H. J., & Fu, M. L. (2015). Synthesis and characterization of 3 D flower -like α-FeOOH nanostructures. Chemical Journal of Chinese Universities, 36, 48–54.Google Scholar
  35. Yakout, A. A., El-Sokkary, R. H., Shreadah, M. A., & Hamid, O. G. A. (2017). Cross-linked graphene oxide sheets via modified extracted cellulose with high metal adsorption. Carbohydrate Polymers., 172, 20–27.CrossRefGoogle Scholar
  36. Yusan, S., & Erenturk, S. (2011). Sorption behaviors of uranium (VI) ions on α-FeOOH. Desalination, 269, 58–66.CrossRefGoogle Scholar
  37. Zhang, R., Chen, C., Li, J., & Wang, X. (2015). Preparation of montmorillonite@carbon composite and its application for U(VI) removal from aqueous solution. Applied Surface Science, 349, 129–137.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xiaowen Zhang
    • 1
  • Tianjiao Jiang
    • 2
  • Chao Xie
    • 2
  • Ying Peng
    • 2
  • Mi Li
    • 1
  • Yongming Zhong
    • 1
  1. 1.Key Laboratory of Radioactive Waste Treatment and DisposalUniversity of South ChinaHengyangChina
  2. 2.School of Environmental and Safety EngineeringUniversity of South ChinaHengyangChina

Personalised recommendations