Water, Air, & Soil Pollution

, 229:49 | Cite as

Role of Biochar and Fungi on PAH Sorption to Soil Rich in Organic Matter

  • Festus AnasonyeEmail author
  • Priit Tammeorg
  • Jevgeni Parshintsev
  • Marja-Liisa Riekkola
  • Marja Tuomela


The use of biochar (BC) has been suggested for remediation of contaminated soils. This study aims to investigate the role of microorganisms in sorption of PAH to BC-amended soils. Fungi, especially the wood and litter-degrading fungi, have shown the ability for humification and to degrade recalcitrant molecules, and are thus suitable model organisms. Haplic Arenosol with high organic matter content was chosen to highlight the importance of soil organic matter (SOM) in PAH sorption, possibly to form non-extractable residue. Basidiomycetous fungi Agrocybe praecox and Phanerochaete velutina grown on pine bark were inoculated in organic matter (OM)-rich Haplic Arenosol and OM-poor sandy loam with either BC or chemically activated BC (ABC) and 14C-labelled pyrene for 60 days. Fungi did not mineralize pyrene, but increased sorption up to 47–56% in BC-amended Haplic Arenosol in comparison with controls (13–25%) without a fungus irrespective of the presence of an adsorbent. In OM-poor sandy loam, only 9–12% of pyrene was sorbed to amended soil in the presence of fungus and adsorbent. The results suggest that BC and fungal amendment increased sorption of pyrene, especially to Haplic Arenosol more than by either BC or fungi alone.


Activated biochar Amendment Haplic Arenosol Organic matter Pyrene Sorption 



The authors thank Jussi Heinonsalo, Kati Hakala and Kari Steffen for providing the experimental soils, and Kaj-Roger Hurme for providing the guidance in working with labelled compounds. This research was funded by Maj and Tor Nessling Foundation.

Supplementary material

11270_2018_3708_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 23 kb)
11270_2018_3708_MOESM2_ESM.docx (17 kb)
ESM 2 (DOCX 17 kb)
11270_2018_3708_MOESM3_ESM.docx (15 kb)
ESM 3 (DOCX 14 kb)


  1. Abujabhah, I. S., Bound, S. A., Doyle, R., & Bowman, J. P. (2016). Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology, 98, 243–253.CrossRefGoogle Scholar
  2. Al Marzooqi, F., & Yousef, L. F. (2017). Biological response of a sandy soil treated with biochar derived from a halophyte (Salicornia bigelovii). Applied Soil Ecology, 114, 9–15.CrossRefGoogle Scholar
  3. Anasonye F., Winquist E., Kluczek-Turpeinen B., Räsänen M., Salonen K., Steffen K.T., Tuomela M. (2014) Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere 110:85-90.
  4. Anasonye, F., Winquist, E., Räsänen, M., Kontro, J., Björklöf, K., Vasilyeva, G., Jørgensen, K. S., Steffen, K. T., & Tuomela, M. (2015). Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. International Biodeterioration & Biodegradation, 105, 7–12.CrossRefGoogle Scholar
  5. Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A., & Sherlock, R. R. (2011). Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54, 309–320.CrossRefGoogle Scholar
  6. Angst, T. E., Patterson, C. J., Reay, D. S., Anderson, P., Peshkur, T. A., & Sohi, S. P. (2013). Biochar diminishes nitrous oxide and nitrate leaching from diverse nutrient sources. Journal of Environmental Quality, 42, 672–682.CrossRefGoogle Scholar
  7. Anyika, C., Majid, Z. A., Ibrahim, Z., Zakaria, M. P., & Yahya, A. (2015). The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review. Environmental Science and Pollution Research, 22, 3314–3341.
  8. Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269–3282.CrossRefGoogle Scholar
  9. Berry, D. F., & Boyd, S. A. (1984). Oxidative coupling of phenols and anilines by peroxidase: structure-activity relationships. Soil Science Society of America Journal, 48, 565–569.CrossRefGoogle Scholar
  10. Bollag, J. M. (1992). Decontaminating soil with enzymes. Environmental Science & Technology, 26, 1876–1881.CrossRefGoogle Scholar
  11. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B Methodological, 211–252.Google Scholar
  12. Case, S. D., McNamara, N. P., Reay, D. S., & Whitaker, J. (2012). The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil–the role of soil aeration. Soil Biology and Biochemistry, 51, 125–134.CrossRefGoogle Scholar
  13. Chen, S., & Liao, C. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment, 366, 112–123.CrossRefGoogle Scholar
  14. Chen, B., & Yuan, M. (2011). Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. Journal of Soils and Sediments, 11, 62–71.CrossRefGoogle Scholar
  15. Cheng, C., & Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75, 1021–1027.CrossRefGoogle Scholar
  16. Cornelissen, G., Breedveld, G. D., Kalaitzidis, S., Christanis, K., Kibsgaard, A., & Oen, A. M. (2006). Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments. Environmental Science & Technology, 40, 1197–1203.CrossRefGoogle Scholar
  17. Dai, Z., Hu, J., Zhang, L., Brookes, P. C., He, Y., & Xu, J. (2016). Sensitive responders among bacterial and fungal microbiome to pyrogenic organic matter (biochar) addition differed greatly between rhizosphere and bulk soils. Scientific Reports, 6, 36101.CrossRefGoogle Scholar
  18. Dai, Z., Hu, J., Barberan, A., Li, Y., Brookes, P. C., He, Y., & Xu, J. (2017). Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonization environment. Applied and Environmental Science, 2(2), e00085–e00017.Google Scholar
  19. de Andrés, J. M., Orjales, L., Narros, A., de la Fuente Mdel, M., & Rodríguez, M. E. (2013). Carbon dioxide adsorption in chemically activated carbon from sewage sludge. Journal of the Air & Waste Management Association, 63, 557–564.CrossRefGoogle Scholar
  20. Dec, J., Haider, K., & Bollag, J. (2001). Decarboxylation and demethoxylation of naturally occurring phenols during coupling reactions and polymerization. Soil Science, 166, 660–671.CrossRefGoogle Scholar
  21. Deng, S., & Zeng, D. (2017). Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus and earthworm. Environmental Science and Pollution Research, 24, 7565–7571.CrossRefGoogle Scholar
  22. Ding, Y., Liu, Y., Liu, S., Zhongwu, L., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. Agronomy for Sustainable Development, 36, 1–18.CrossRefGoogle Scholar
  23. EBC. (2012). European biochar Certificate—guidelines for a sustainable production of biochar. European biochar Foundation (EBC), Arbaz, Switzerland. http://www.european Version 6.2E of 04th February 2016.
  24. FAO-UNESCO. (1997). Soil map of the world. Revised legend, with corrections and updates. World Soil Resources Report 60, Reprinted with updates as Technical paper 20, International Soil Reference and Information Centre, Wageningen, 140 p.Google Scholar
  25. Farrell, M., Kuhn, T. K., Macdonald, L. M., Maddern, T. M., Murphy, D. V., Hall, P. A., Singh, B. P., Baumann, K., Krull, E. S., & Baldock, J. A. (2013). Microbial utilisation of biochar-derived carbon. Science of the Total Environment, 465, 288–297.CrossRefGoogle Scholar
  26. García-Delgado, C., Alfano-Barta, I., & Eymar, E. (2015). Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. Journal of Hazardous Materials, 285, 259–266.CrossRefGoogle Scholar
  27. Gibson, C., Berry, T. D., Wang, R., Spencer, J. A., Johnston, C. T., Jiang, Y., Bird, J. A., & Filley, T. R. (2016). Weathering of pyrogenic organic matter induces fungal oxidative enzyme response in single culture inoculation experiments. Organic Geochemistry, 92, 32–41.CrossRefGoogle Scholar
  28. Grossman, J. M., O’Neill, B. E., Tsai, S. M., Liang, B., Neves, E., Lehmann, J., & Thies, J. E. (2010). Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microbial Ecology, 60, 192–205.CrossRefGoogle Scholar
  29. Hale, S., Hanley, K., Lehmann, J., Zimmerman, A., & Cornelissen, G. (2011). Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environmental Science & Technology, 45, 10445–10453.CrossRefGoogle Scholar
  30. Held, T., Draude, G., Schmidt, F., Brokamp, A., & Reis, K. (1997). Enhanced humification as an in-situ bioremediation technique for 2, 4, 6-trinitrotoluene (TNT) contaminated soils. Environmental Science & Technology, 18, 479–487.CrossRefGoogle Scholar
  31. Hilber, I., Blum, F., Leifeld, J., Schmidt, H. P., & Bucheli, T. (2012). Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. Journal of Agricultural and Food Chemistry, 60, 3042–3050.CrossRefGoogle Scholar
  32. IBI. (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. International biochar Initiative, p.15 Accessed 18 Dec 2016.
  33. Ilvesniemi, H., Giesle, R., van Hees, P., Magnussson, T., & Melkerud, P. A. (2000). General description of the sampling techniques and the sites investigated in the Fennoscandinavian podzolization project. Geoderma, 94, 109–123.CrossRefGoogle Scholar
  34. Impellitteri, C. A., Lu, Y., Saxe, J. K., Allen, H. E., & Peijnenburg, W. J. (2002). Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environment International, 28, 401–410.CrossRefGoogle Scholar
  35. Jin, H. (2010.) Characterization of microbial life colonizing biochar and biochar-amended soils. PhD Dissertation, Cornell University, Ithaca.Google Scholar
  36. Jones, D., Rousk, J., Edwards-Jones, G., DeLuca, T., & Murphy, D. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry, 45, 113–124.CrossRefGoogle Scholar
  37. Kästner, M., Nowak, K. M., Miltner, A., Stefan, T., & Schäffer, A. (2014). Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil—a synthesis. Critical Reviews in Environmental Science and Technology, 44, 2107–2171.CrossRefGoogle Scholar
  38. Khadem, A., & Raiesi, F. (2017). Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Applied Soil Ecology, 114, 16–27.CrossRefGoogle Scholar
  39. Khan, S. (1978). The interaction of organic matter with pesticides. In M. Schnitzer (Ed.), Soil organic matter: development in soil science (pp. 137–171). Amsterdam: Elsevier.CrossRefGoogle Scholar
  40. Kolton, M., Meller, H. Y., Pasternak, Z., Graber, E. R., Elad, Y., & Cytryn, E. (2011). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied Environmental Microbiology, 77, 4924–4930.CrossRefGoogle Scholar
  41. Kumari, K., Moldrup, P., Paradelo, M., & de Jonge, L. W. (2014). Phenanthrene sorption on biochar-amended soils: application rate, aging, and physicochemical properties of soil. Water, Air, & Soil Pollution, 225, 1–13.CrossRefGoogle Scholar
  42. Kurth, V., MacKenzie, M., & DeLuca, T. (2006). Estimating charcoal content in forest mineral soils. Geoderma, 137, 135–139.CrossRefGoogle Scholar
  43. Lalhruaitluanga, H., Prasad, M., & Radha, K. (2011). Potential of chemically activated and raw charcoals of Melocanna baccifera for removal of Ni (II) and Zn (II) from aqueous solutions. Desalination, 271, 301–308.CrossRefGoogle Scholar
  44. Lamichhane, S., Krishna, K., & Sarukkalige. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere, 148, 336–353.CrossRefGoogle Scholar
  45. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—a review. Soil Biology and Biochemistry, 43, 1812–1836.CrossRefGoogle Scholar
  46. Lian, F., Sun, B., Chen, X., Zhu, L., Liu, Z., & Xing, B. (2015). Effect of humic acid (HA) on sulfonamide sorption by biochars. Environmental Pollution, 204, 306–312.CrossRefGoogle Scholar
  47. Liedekerke, M., Prokop, G., Rabl-Berger, S., Kibblewhite, Louwagie, G. (2014). Progress in the management of contaminated sites in Europe. JRC Reference Reports, Joint Research Centre, Report EUR 26376 EN, European Commission. Accessed 06 Sept 2016.
  48. Liu, P., Liu, W., Jiang, H., Chen, J., Li, W., & Yu, H. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235–240.CrossRefGoogle Scholar
  49. Macleod, C. J., & Semple, K. T. (2002). The adaptation of two similar soils to pyrene catabolism. Environmental Pollution, 119, 357–364.CrossRefGoogle Scholar
  50. Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Science, 333, 117–128.Google Scholar
  51. Martin, S. M., Kookana, R. S., Van Zwieten, L., & Krull, E. (2012). Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. Journal of Hazardous Materials, 231, 70–78.CrossRefGoogle Scholar
  52. Mitchell, P. J., Dalley, T. S., & Helleur, R. J. (2013). Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. Journal of Analytical and Applied Pyrolysis, 99, 71–78.CrossRefGoogle Scholar
  53. Mitchell, P. J., Simpson, A. J., Soong, R., Schurman, J. C., Thomas, S. C., & Simpson, M. J. (2016). Biochar amendment and phosphorus altered forest soil microbial community and native soil organic matter molecular composition. Biogeochemistry, 130, 227–245.CrossRefGoogle Scholar
  54. Murphy, B. L., & Brown, J. (2005). Environmental forensics aspects of PAHs from wood treatment with creosote compounds. Environmental Forensics, 6, 151–159.CrossRefGoogle Scholar
  55. Nielsen, S., Minchin, T., Kimber, S., van Zwieten, L., Gilbert, J., Munroe, P., Joseph, S., & Thomas, T. (2014). Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agriculture, Ecosystems & Environment, 191, 73–82.CrossRefGoogle Scholar
  56. Noyce, G. L., Winsborough, C., Fulthorpe, R., & Basiliko, N. (2016). The microbiomes and metagenomes of forest biochars. Scientific Reports, 6, 26425.CrossRefGoogle Scholar
  57. O’Neill, B., Grossman, J., Tsai, M., Gomes, J., Lehmann, J., Peterson, J., Neves, E., & Thies, J. E. (2009). Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecology, 58, 23–35.CrossRefGoogle Scholar
  58. Ogbonnaya, U., Oyelami, A., Matthews, J., Adebisi, O., & Semple, K. T. (2014). Influence of wood biochar on phenanthrene catabolism in soils. Environments, 1, 60–74.CrossRefGoogle Scholar
  59. Olivella, Costa, À., Fernández, I., Cano, L., Jové, P., & Oliveras, A. (2013). Role of chemical components of cork on sorption of aqueous polycyclic aromatic hydrocarbons. International Journal of Environmental Research, 1, 225–234.Google Scholar
  60. Pan, F., Li, Y., Chapman, S. T., Khan, S., & Yao, H. (2016). Microbial utilization of rice straw and its derived biochar in a paddy soil. Science of the Total Environment, 559, 15–23.CrossRefGoogle Scholar
  61. Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. H., & Park, S. (2013). Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 149, 383–389.CrossRefGoogle Scholar
  62. Pietikäinen, J., Kiikkilä, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89, 231–242.CrossRefGoogle Scholar
  63. Pignatello, J. J., Kwon, S., & Lu, Y. (2006). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environmental Science & Technology, 40, 7757–7763.CrossRefGoogle Scholar
  64. Prayogo, C., Jones, J. E., & Bending, G. D. (2013). Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50, 695–702.CrossRefGoogle Scholar
  65. Quilliam, R. S., Glanville, H. C., Wade, S. C., & Jones, D. L. (2013a). Life in the charosphere—does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology and Biochemistry, 69, 287–293.CrossRefGoogle Scholar
  66. Quilliam, R. S., Rangecroft, S., Emmett, B. A., Deluca, T. H., & Jones, D. L. (2013b). Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy, 5, 96–103.CrossRefGoogle Scholar
  67. Rhodes, A., Carlin, A., & Semple, K. T. (2008). Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Science of the Total Environment, 42, 740–745.CrossRefGoogle Scholar
  68. Rumpel, C., Alexis, M., Chabbi, A., Chaplot, V., Rasse, D. P., Valentin, C., & Mariotti, A. (2006). Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma, 130, 35–46.CrossRefGoogle Scholar
  69. Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22, 1315–1324.CrossRefGoogle Scholar
  70. Soil Survey Staff. (1998). Keys to soil taxonomy. United States Department of Agriculture/Natural Resources Conservation Service.Google Scholar
  71. Steffen, K., Hatakka, A., & Hofrichter, M. (2002). Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Applied Microbiology and Biotechnology, 60, 212–217.CrossRefGoogle Scholar
  72. Taketani, R.G., Lima, A.B., da Conceição Jesus, E., Teixeira W.G., Tiedje J.M., Tsai S/M. (2013). Bacterial community composition of anthropogenic biochar and Amazonian anthrosols assessed by 16S rRNA gene 454 pyrosequencing. Antonie van Leeuwenhoek 104:233-242.
  73. Tammeorg, P., Parviainen, T., Nuutinen, V., Simojoki, A., Vaara, E., & Helenius, J. (2014a). Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand. Agriculture, Ecosystems & Environment, 191, 150–157.CrossRefGoogle Scholar
  74. Tammeorg, P., Simojoki, A., Mäkelä, P., Stoddard, F. L., Alakukku, L., & Helenius, J. (2014b). Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agriculture, Ecosystems & Environment, 191, 108–116.CrossRefGoogle Scholar
  75. Tuomela, M., Lyytikäinen, M., Oivanen, P., & Hatakka, A. (1999). Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungi Trametes versicolor. Soil Biology and Biochemistry, 31, 65–74.CrossRefGoogle Scholar
  76. Tuomela, M., Oivanen, P., & Hatakka, A. (2002). Degradation of synthetic 14C-lignin by various white-rot fungi in soil. Soil Biology and Biochemistry, 34, 1613–1620.CrossRefGoogle Scholar
  77. Valentín, L., Oesch-Kuisma, H., Steffen, K. T., Kähkönen, M. A., Hatakka, A., & Tuomela, M. (2013). Mycoremediation of wood and soil from an old sawmill area contaminated for decades. Journal of Hazardous Materials, 260, 668–675.CrossRefGoogle Scholar
  78. Warnock, D. D., Lehmann, J., Kuype, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and Soil, 300, 9–20.CrossRefGoogle Scholar
  79. Watzinger, A., Feichtmair, S., Kitzler, B., Zehetner, F., Kloss, S., Wimmer, B., Zechmeister-Boltenstern, S., & Soja, G. (2014). Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment. European Journal of Soil Science, 65, 40–51.CrossRefGoogle Scholar
  80. Winquist, E., Björklöf, K., Schultz, E., Räsänen, M., Salonen, K., Anasonye, F., Cajthaml, T., Steffen, K. T., Jørgensen, K. S., & Tuomela, M. (2014). Bioremediation of PAH-contaminated soil with fungi—from laboratory to field scale. International Biodeterioration & Biodegradation, 86, 238–247.CrossRefGoogle Scholar
  81. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, 56.CrossRefGoogle Scholar
  82. Zhang, H., Lin, K., Wang, H., & Gan, J. (2010). Effect of Pinus radiata derived biochar on soil sorption and desorption of phenanthrene. Environmental Pollution, 158, 2821–2825.CrossRefGoogle Scholar
  83. Zhang, Q., Zhou, W., Liang, G. Q., Sun, J. W., Wang, X. B., & He, P. (2015). Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment. Applied Soil Ecology, 94, 59–71.CrossRefGoogle Scholar
  84. Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental Pollution, 227, 98–115.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Agricultural Sciences, Plant Production SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Laboratory of Analytical Chemistry, Department of ChemistryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations