A Comprehensive Review of the Available Media and Approaches for Phosphorus Recovery from Wastewater

  • Lihong Peng
  • Hongliang Dai
  • Yifeng Wu
  • Yonghong Peng
  • Xiwu Lu


Phosphorus (P) is an essential element for all living organisms, and plays a major role in many physiological processes. However, in recent years, excessive amounts of P discharged into aquatic environments have become one of the main causes of water eutrophication, which has negative effects on water quality. Therefore, it is desirable to implement technologies to recover P from P-containing solutions to maintain the natural P cycle and reduce the level of P entering surface waters. This work reviews the latest studies on P recovery technologies, with a specific focus on current approaches and treatment media including seed materials, microorganisms, wetland plants, and membrane materials. This review also investigates the potential for P recovery, the purity of recovered products, the technical and economic feasibility of different approaches, and the resulting ecological and economic benefits. Building upon the outcomes of previous studies, technological innovations in P recovery media and approaches were considered to evaluate their advantages, difficulties, and inherent limitations. This comprehensive review provides the basis for additional research and the future development of P recovery in response to the increasing severity of eutrophication and the imminent depletion of P reserves.


Phosphorus recovery Struvite Hydroxyapatite Calcium silicate hydrate Crystallization Microbial fuel cells 



This research was funded by the Major Science and Technology Project of Water Pollution Control and Management in China (2012ZX07101005), the National Science and Technology Support Program in China (2015BAL01B01), the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1643), and Water pollution control project in Taihu (TH2016203). We thank the anonymous reviewers for their constructive comments that improved the manuscript.

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/index/LONgIk


  1. Abdelhamid, A. M., & Gabr, A. A. (1991). Evaluation of water hyacinth as a feed for ruminants. Archives of Animal Nutrition, 41(7–8), 745–756.Google Scholar
  2. Abdelraouf, N., Alhomaidan, A. A., & Ibraheem, I. B. M. (1995). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 31(3), 205–210.Google Scholar
  3. Abdulsada, Z. K. (2014). Evaluation of microalgae for secondary and tertiary wastewater treatment. Department of Civil and Environmental Engineering-Carleton University/Ottawa-Carleton Institute for Environmental Engineering, Ottawa.Google Scholar
  4. Abis, K. L., & Mara, D. D. (2005). Primary facultative ponds in the UK: the effect of operational parameters on performance and algal populations. Water Science & Technology A Journal of the International Association on Water Pollution Research, 51(12), 61–67.Google Scholar
  5. Abma, W. R., Driessen, W., Haarhuis, R., & van Loosdrecht, M. C. (2010). Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Science & Technology A Journal of the International Association on Water Pollution Research, 61(7), 1715–1722.CrossRefGoogle Scholar
  6. Adey, W. H., Kangas, P. C., & Mulbry, W. (2011). Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Bioscience, 61(6), 434–441.CrossRefGoogle Scholar
  7. Adhikari, U., Harrigan, T., & Reinhold, D. M. (2015). Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater. Ecological Engineering, 78, 6–14.CrossRefGoogle Scholar
  8. Aida, T. M., Nonaka, T., Fukuda, S., Kujiraoka, H., Kumagai, Y., Maruta, R., Ota, M., Suzuki, I., Watanabe, M. M., & Inomata, H. (2016). Nutrient recovery from municipal sludge for microalgae cultivation with two-step hydrothermal liquefaction. Algal Research, 18, 61–68.CrossRefGoogle Scholar
  9. Ali, M. I. (2005). Struvite crystallization from nutrient rich wastewater-PhD thesis. (2005) phd thesis, James Cook University.Google Scholar
  10. Almatouq, A., & Babatunde, A. O. (2016). Concurrent phosphorus recovery and energy generation in mediator-less dual chamber microbial fuel cells: mechanisms and influencing factors. International Journal of Environmental Research & Public Health, 13(4), 375.CrossRefGoogle Scholar
  11. Angel, R. (2010). Removal of phosphate from sewage as amorphous calcium phosphate. Environmental Technology, 20(7), 709–720.CrossRefGoogle Scholar
  12. Battistoni, P. (2004). Phosphorus recovery trials in Treviso, Italy-Theory modelling and application. In: Phosphorus in environmental technologies, principles and applications. Valsami-Jones (pp. 428–469). London: IWA Publishing.Google Scholar
  13. Battistoni, P., Pavan, P., Prisciandaro, M., & Cecchi, F. (2000). Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants. Water Research, 34(11), 3033–3041.CrossRefGoogle Scholar
  14. Bauer, P. J., Szogi, A. A., & Vanotti, M. B. (2007). Agronomic effectiveness of calcium phosphate recovered from liquid swine manure. Agronomy Journal, 99(5), 1352–1356.CrossRefGoogle Scholar
  15. Berg, U., Donnert, D., Weidler, P. G., Kaschka, E., Knoll, G., & Nüesch, R. (2006). Phosphorus removal and recovery from wastewater by tobermorite-seeded crystallisation of calcium phosphate. Water Science & Technology A Journal of the International Association on Water Pollution Research, 53(3), 131–138.CrossRefGoogle Scholar
  16. Blank, L. M. (2012). The cell and p: from cellular function to biotechnological application. Current Opinion in Biotechnology, 23(6), 846–851.CrossRefGoogle Scholar
  17. Bojcevska, H., Raburu, P. O., & Tonderski, K. S. (2006). Free water surface wetlands for polishing sugar factory effluent in western kenya-macrophyte nutrient recovery and treatment results. In Diaz, V., Vymazal J. (eds.), Proceedings of the 10th International Conference on Wetland Systems for Water Pollution Control, 23–29 September 2006 (pp. 709–718). Lisbon: Ministerio de Ambiente, do Ordenamento do Territori e do Desenvolvimento Regional (MAOTDR) and IWA.Google Scholar
  18. Bouchaib, E. H. (2009). Rethinking natural, extensive systems for tertiary treatment purposes: the high-rate algae pond as an example. Desalination & Water Treatment, 4(1–3), 128–134.Google Scholar
  19. Boyd, C. E. (1982). Utilization of aquatic plants (p. 107). New York: UNIPUB.Google Scholar
  20. Cai, W., Zhang, B. G., Jin, Y. X., Lei, Z. F., Feng, C. P., Ding, D. H., Hu, W. W., Chen, N., & Suemura, T. (2013). Behavior of total phosphorus removal in an intelligent controlled sequencing batch biofilm reactor for municipal wastewater treatment. Bioresource Technology, 132(3), 190–196.CrossRefGoogle Scholar
  21. Camargo Valero, M. A., Mara, D. D., & Newton, R. J. (2010). Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass. Water Science & Technology A Journal of the International Association on Water Pollution Research, 61(4), 1027–1034.CrossRefGoogle Scholar
  22. Capdevielle, A., Sýkorová, E., Béline, F., & Daumer, M. L. (2016). Effects of organic matter on crystallization of struvite in biologically treated swine wastewater. Environmental Technology, 37(7), 880–892.CrossRefGoogle Scholar
  23. Chen, X., Kong, H., Deyi, W. U., Wang, X., & Lin, Y. (2009). Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal. Journal of Environmental Science, 21(5), 575–580.CrossRefGoogle Scholar
  24. Cheng, J. J., & Stomp, A. M. (2009). Growing duckweed to recover nutrients from wastewater and for production of fuel ethanol and animal feed. Clean-soil Air Water, 37(1), 7–26.CrossRefGoogle Scholar
  25. Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131.CrossRefGoogle Scholar
  26. Chisti, Y. (2013). Constraints to commercialization of algal fuels. Journal of Biotechnology, 167(3), 201–214.CrossRefGoogle Scholar
  27. Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2), 292–305.CrossRefGoogle Scholar
  28. Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science & Technology A Journal of the International Association on Water Pollution Research, 59(6), 1069–1076.CrossRefGoogle Scholar
  29. Cusick, R. D., & Logan, B. E. (2012). Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technology, 107(2), 110–115.CrossRefGoogle Scholar
  30. Cusick, R. D., Ullery, M. L., Dempsey, B. A., & Logan, B. E. (2014). Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Research, 54(5), 297–306.CrossRefGoogle Scholar
  31. D’Aiuto, P. E., Patt, J. M., Albano, J. P., Shatters, R. G., & Evens, T. J. (2015). Algal turf scrubbers: periphyton production and nutrient recovery on a south florida citrus farm. Ecological Engineering, 75(4), 404–412.CrossRefGoogle Scholar
  32. Dai, H., Lu, X., Peng, Y., Zou, H., & Shi, J. (2016). An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. Chemosphere, 165, 211–220.CrossRefGoogle Scholar
  33. Dai, H., Lu, X., Peng, Y., Yang, Z., & Zhsssu, H. (2017). Effects of supersaturation control strategies on hydroxyapatite (HAP) crystallization for phosphorus recovery from wastewater. Environmental Science & Pollution Research, 24(6), 5791–5799.CrossRefGoogle Scholar
  34. Dam, A. M. V., & Ehlert, P. A. I. (2007). P-availability in organic fertilizers. Praktijkonderzoek Plant & Omgeving BV.Google Scholar
  35. De-bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research, 38(19), 4222–4246.CrossRefGoogle Scholar
  36. Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Bruggen, B. V. D., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global phosphorus scarcity and Pfull-scale P-recovery techniques: a review. Critical Reviews in Environmental Science & Technology, 45(4), 336–384.CrossRefGoogle Scholar
  37. Division, M. D. S., 1983. Technical guidance manual for performing wasteload allocations, Book IV: Lakes and Impoundments. Eutrophication.Google Scholar
  38. Dockhorn, T. (2009). About the economy of phosphorus recovery. In: International Conference on Nutrient Recovery from Wastewater Streams, Vancouver, Canada, IWA publishing (pp. 145–158), London, UK.Google Scholar
  39. Donnert, D., & Salecker, M. (1999). Elimination of phosphorus from waste water by crystallization. Environmental Technology, 20(7), 735–742.CrossRefGoogle Scholar
  40. Doyle, J. D., & Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36(16), 3925–3940.CrossRefGoogle Scholar
  41. Driver, J., Lijmbach, D., & Steen, I. (1999). Why recover phosphorus for recycling, and how? Environmental Technology, 20(7), 651–662.CrossRefGoogle Scholar
  42. Duan, J. M., Cao, Y. L., & He, B. Y. (2010). Phosphates recovery through hydroxyapatite crystallization from wastewater using converter slag as a seed crystal. International Conference on Bioinformatics and Biomedical Engineering (pp. 1–4). IEEE.Google Scholar
  43. Eggers, E., Dirkzwager, A. H., & Honing, D. H. V. (1991). Full-scale experiences with phosphate crystallization in a crystalactor. Blood, 57(3), 545–552.Google Scholar
  44. Egle, L., Rechberger, H., & Zessner, M. (2015). Overview and description of technologies for recovering phosphorus from municipal wastewater. Resources Conservation & Recycling, 105, 325–346.CrossRefGoogle Scholar
  45. Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522–542.CrossRefGoogle Scholar
  46. Ehrlich, P. (1998). The loss of diversity. Biodiversity Published by National Academy Press, 14, 21–27.Google Scholar
  47. Fenu, C., Martin, D., Reichel, L., & Rodriguez, G. (2013). Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Comprehensive Reviews in Food Science & Food Safety, 12(6), 662–678.CrossRefGoogle Scholar
  48. Fu, W., & Li, L. (2004). Mechanism and method for membrane washing on a membrane bioreactor. Techniques and Equipment for Environmental Pollution Control, 5(8), 43–46.Google Scholar
  49. Garnier, J., Lassaletta, L., Billen, G., Romero, E., Grizzetti, B., Némery, J., Le, T. P. Q., Pistocchi, C., Aissa-Grouz, N., Luu, T. N. M., Vilmin, L., & Dorioz, J. M. (2015). Phosphorus budget in the water-agro-food system at nested scales in two contrasted regions of the world (ASEAN-8 and EU-27). Global Biogeochemical Cycles, 29(9), 1348–1368.CrossRefGoogle Scholar
  50. Gaterell, M. R., Gay, R., Wilson, R., Gochin, R. J., & Lester, J. N. (2000). An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets. Environmental Technology, 21(9), 1067–1084.CrossRefGoogle Scholar
  51. Gell, K., Ruijter, F. J. D., Kuntke, P., & Graaff, M. D. (2011). Safety and effectiveness of struvite from black water and urine as a phosphorus fertilizer. Journal of Agricultural Science (1916–9752), 3(3), 67–80.Google Scholar
  52. Gilbert, N. (2009). The disappearing nutrient. Nature, 461(7265), 716–718.CrossRefGoogle Scholar
  53. GMB. (2010). SaNiPhos. Obheusden, Netherlands, www.saniphos.eu.
  54. Gu, C., Zhang, C., Li, Y., & Zhou, Q. (2015). Phosphorus recovery from sludge fermentation broth by cow-bone powder-seeded crystallization of calcium phosphate. Chinese Journal of Environmental Engineering, 9(7), 3127–3133.Google Scholar
  55. Guan, W., Ji, F., Chen, Q., Yan, P., & Zhang, Q. (2013). Preparation and phosphorus recovery performance of porous calcium–silicate–hydrate. Research of Environmental Sciences, 39(2), 1385–1391.Google Scholar
  56. Han, L., Randhir, T. O., & Huang, M. (2017). Design and assessment of stream–wetland systems for nutrient removal in an urban watershed of china. Water Air & Soil Pollution, 228(4), 139.CrossRefGoogle Scholar
  57. Hasan, M. R., & Chakrabarti, R. (2009). Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. Fao Fisheries & Aquaculture Technical Paper, (pp. 2071–7071).Google Scholar
  58. Hau, N. T., Chen, S. S., Nguyen, N. C., Huang, K. Z., Ngo, H. H., & Guo, W. (2014). Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. Journal of Membrane Science, 455, 305–311.CrossRefGoogle Scholar
  59. Havukainen, J., Nguyen, M. T., Hermann, L., Horttanainen, M., Mikkilä, M., Deviatkin, I., & Linnanena, L. (2016). Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Management, 49, 221–229.CrossRefGoogle Scholar
  60. Heckenmüller, M., Narita, D., & Klepper, G. (2014). Global availability of phosphorus and its implications for global food supply: an economic overview. Kiel Working Papers.Google Scholar
  61. Hirooka, K., & Ichihashi, O. (2013). Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation. Bioresource Technology, 137(6), 368–375.CrossRefGoogle Scholar
  62. Hirota, R., Kuroda, A., Kato, J., & Ohtake, H. (2010). Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. Journal of Bioscience and Bioengineering, 109(5), 423–432.CrossRefGoogle Scholar
  63. Huang, L. Y., Lee, D. J., & Lai, J. Y. (2015). Forward osmosis membrane bioreactor for wastewater treatment with phosphorus recovery. Bioresource Technology, 198, 418–423.CrossRefGoogle Scholar
  64. Human, L. R. D., Snow, G. C., Adams, J. B., Bate, G. C., & Yang, S. C. (2015). The role of submerged macrophytes and macroalgae in nutrient cycling: a budget approach. Estuarine Coastal & Shelf Science, 154, 169–178.CrossRefGoogle Scholar
  65. Husnain, T., Mi, B., & Riffat, R. (2015). A combined forward osmosis and membrane distillation system for sidestream treatment. Journal of Water Resource & Protection, 7(14), 1111–1120.CrossRefGoogle Scholar
  66. Ichihashi, O., & Hirooka, K. (2012). Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresource Technology, 114(2), 303–307.CrossRefGoogle Scholar
  67. Ishikawa, H., Shimamura, K., Sawai, K., & Tanaka, T. (2004). A2-tank type fluidized bed MAP crystallisation reactor for effective phosphorus recovery. In: Proceedings of the International Conference on Struvite: its role in phosphorus recovery and reuse, Cranfield (UK).Google Scholar
  68. Jaffer, Y., Clark, T. A., Pearce, P., & Parsons, S. A. (2002). Potential phosphorus recovery by struvite formation. Water Research, 36(7), 1834–1842.CrossRefGoogle Scholar
  69. Jang, H., & Kang, S. H. (2002). Phosphorus removal using cow bone in hydroxyapatite crystallization. Water Research, 36(7), 1324–1330.CrossRefGoogle Scholar
  70. Jiang, J. Q., & Wu, L. (2010). Preliminary study of calcium silicate hydrate (tobermorite) as crystal material to recovery phosphate from wastewater. Desalination & Water Treatment, 23(1–3), 49–54.CrossRefGoogle Scholar
  71. Joko, I. (1985). Phosphorus removal from wastewater by the crystallization method. Waterence & Technology, 17(2–3), 121–132.Google Scholar
  72. Kaneko, S., & Nakajima, K. (1988). Phosphorus removal by crystallization using a granular activated magnesia clinker. Journal, 60(7), 1239–1244.Google Scholar
  73. Karapinar, N., Hoffmann, E., & Hahn, H. H. (2006). P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral. Water Research, 40(6), 1210–1216.CrossRefGoogle Scholar
  74. Kataki, S., West, H., Clarke, M., & Baruah, D. C. (2016). Phosphorus recovery as struvite: recent concerns for use of seed, alternative mg source, nitrogen conservation and fertilizer potential. Resources Conservation & Recycling, 107, 142–156.Google Scholar
  75. Kebreab, E., Hansen, A. V., & Strathe, A. B. (2012). Animal production for efficient phosphate utilization: from optimized feed to high efficiency livestock. Current Opinion in Biotechnology, 23(6), 872–887.CrossRefGoogle Scholar
  76. Kim, Y., & Logan, B. E. (2011). Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16176–16181.CrossRefGoogle Scholar
  77. Kim, H. J., Hyun, M. S., Chang, I. S., & Kim, B. H. (1999). A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 9, 365–367.Google Scholar
  78. Kim, E. H., Yim, S. B., Jung, H. C., & Lee, E. J. (2006). Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material. Journal of Hazardous Materials, 136(3), 690–697.CrossRefGoogle Scholar
  79. Landolt, E., & Kandeler. R. (1987). The family of Lemnaceae-a monographic study, Veroeffentlichungen Des Geobotanischen Instituts Der Eth Stiftung Ruebel, p. 2.Google Scholar
  80. Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: a review. Critical Reviews in Environmental Science & Technology, 39(6), 433–477.CrossRefGoogle Scholar
  81. Liberti, L. (2001). Feasibility study on application of Rem Nut process to phosphate recovery from wasterwater. Paper of the 2nd International Conference on Phosphate Recover for Recycling from sewage and animal wastes. Noordwijkerhout, the Netherlands.Google Scholar
  82. Liberti, L., Limoni, N., Lopez, A., Passino, R., & Boari, G. (1986). The 10 m3 h−1 rim-nut demonstration plant at west Bari for removing and recovering N and P from wastewater. Water Research, 20(6), 735–739.CrossRefGoogle Scholar
  83. Liu, Y. H., Rahman, M. M., Kwag, J. H., Kim, J. H., & Ra, C. S. (2011). Eco-friendly production of maize using struvite recovered from swine wastewater as a sustainable fertilizer source. Asian Australasian Journal of Animal Sciences, 24, 1699–1705.CrossRefGoogle Scholar
  84. Liu, X., Xiang, L., Song, Y., Qian, F., & Meng, X. (2015). The effects and mechanism of alkalinity on the phosphate recovery from anaerobic digester effluent using dolomite lime. Environmental Earth Sciences, 73(9), 5067–5073.CrossRefGoogle Scholar
  85. Lodder, R., & Meulenkamp, R. (2011). Fosfaatterugwinning in communale afvalwaterzuiveringsinstallaties (Recuperation of phosphate in communal wastewater treatment plants), Report, (pp. 2100–2124).Google Scholar
  86. Lucy, E. E. (2014). Waste stabilization pond ecology: a molecular approach. University of Newcastle Upon Tyne.Google Scholar
  87. Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., Yamamoto, K., & Nghiem, L. D. (2016). Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system. Bioresource Technology, 200, 297–304.CrossRefGoogle Scholar
  88. Mako, A. A., Babayemi, O. J., & Akinsoyinu, A. O. (2011). An evaluation of nutritive value of water hyacinth (eichhornia crassipes mart. solms-laubach) harvested from different water sources as animal feed. Livestock Research for Rural Development, 23(5), 10.Google Scholar
  89. Maurer, M., Abramovich, D., Siegrist, H., & Gujer, W. (1999). Kinetics of biologically induced phosphorus precipitation in waste-water treatment. Water Research, 33(2), 484–493.CrossRefGoogle Scholar
  90. Mcleod, K., Kumar, S., Smart, R. S. C., Dutta, N., Voelcker, N. H., Anderson, G. I., & Sekel, R. (2006). XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings. Applied Surface Science, 253(5), 2644–2651.CrossRefGoogle Scholar
  91. Mehta, C. M., & Batstone, D. J. (2013). Nucleation and growth kinetics of struvite crystallization. Water Research, 47(8), 2890–2900.CrossRefGoogle Scholar
  92. Metson, G. S., Bennett, E. M., & Elser, J. J. (2012). The role of diet in phosphorus demand. Environmental Research Letters, 7(4), 11–21.CrossRefGoogle Scholar
  93. Moerman, W., Carballa, M., Vandekerckhove, A., Derycke, D., & Verstraete, W. (2009). Phosphate removal in agro-industry: Pilot- and full-scale operational considerations of struvite crystallization. Water Research, 43(7), 1887–1892.CrossRefGoogle Scholar
  94. Monma, H., & Kamiya, T. (1987). Preparation of hydroxyapatite by the hydrolysis of brushite. Journal of Materials Science, 22(12), 4247–4250.CrossRefGoogle Scholar
  95. Montag, D. M. (2008). Phosphorrückgewinnung bei der Abwasserreinigung: Entwicklung eines Verfahrens zur Integration in kommunale Kläranlagen. Rwth Aachen.Google Scholar
  96. Montastruc, L., Azzaro-Pantel, C., Biscans, B., Cabassud, M., & Domenech, S. (2003). A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal, 94(1), 41–50.CrossRefGoogle Scholar
  97. Morse, G. K., Brett, S. W., Guy, J. A., & Lester, J. N. (1998). Review: phosphorus removal and recovery technologies. Science of the Total Environment, 212(1), 69–81.CrossRefGoogle Scholar
  98. Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21(3), 285–293.CrossRefGoogle Scholar
  99. Moussa, S. B., Maurin, G., Gabrielli, C., & Amor, M. B. (2006). Electrochemical precipitation of struvite. Electrochemical and Solid-State Letters, 9(6), C97–C101.Google Scholar
  100. Mulbry, W. (2006). Biofertilizers from algal treatment of dairy and swine manure effluents: characterization of algal biomass as a slow release fertilizer. Heat Treatment of Metals, 12, 80–85.Google Scholar
  101. Muster, T. H., Douglas, G. B., Sherman, N., Seeber, A., Wright, N., & Güzükara, Y. (2013). Towards effective phosphorus recycling from wastewater: quantity and quality. Chemosphere, 91(5), 676–684.CrossRefGoogle Scholar
  102. Ohlinger, K. N., Young, T. M., & Schroeder, E. D. (1998). Predicting struvite formation in digestion. Water Research, 32(12), 3607–3614.CrossRefGoogle Scholar
  103. Ohlinger, K. N., Young, T. M., & Schroeder, E. D. (1999). Kinetics effects on preferential struvite accumulation in wastewater. Journal of Environmental Engineering, 125(8), 730–737.CrossRefGoogle Scholar
  104. Okano, K., Uemoto, M., Kagami, J., Miura, K., Aketo, T., Toda, M., Honda, K., & Ohtake, H. (2013). Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs). Water Research, 47(7), 2251–2259.CrossRefGoogle Scholar
  105. Oladoja, N. A., & Ahmad, A. L. (2012). Low-cost biogenic waste for phosphate capture from aqueous system. Chemical Engineering Journal, 209(41), 170–179.CrossRefGoogle Scholar
  106. Oladoja, N. A., Ololade, I. A., Adesina, A. O., Adelagun, R. O. A., & Sani, Y. M. (2013). Appraisal of gastropod shell as calcium ion source for phosphate removal and recovery in calcium phosphate minerals crystallization procedure. Chemical Engineering Research & Design, 91(5), 810–818.CrossRefGoogle Scholar
  107. Oladoja, N. A., Adelagun, R. O. A., Ahmad, A. L., & Ololade, I. A. (2017). Green reactive material for phosphorus capture and remediation of aquaculture wastewater. Process Safety & Environmental Protection, 105, 21–31.CrossRefGoogle Scholar
  108. Petzet, S., & Cornel, P. (2012). Prevention of struvite scaling in digesters combined with phosphorus removal and recovery—the fix-Phos process. Water Environment Research A Research Publication of the Water Environment Federation, 84(3), 220–226.CrossRefGoogle Scholar
  109. Petzet, S., & Cornel, P. (2013). Phosphorus recovery from wastewater. Water Science & Technology, 59(6), 1069–1076.Google Scholar
  110. Posadas, E., García-Encina, P. A., Soltau, A., Domínguez, A., Díaz, I., & Muñoz, R. (2013). Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresource Technology, 139(13), 50–58.CrossRefGoogle Scholar
  111. Posadas, E., Morales, M. D. M., Gomez, C., Acién, F. G., & Muñoz, R. (2015). Influence of pH and CO2, source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chemical Engineering Journal, 265, 239–248.CrossRefGoogle Scholar
  112. Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae-defining the polyphosphate dynamics. Water Research, 43(17), 4207–4213.CrossRefGoogle Scholar
  113. Pretty, J. N., Mason, C. F., Nedwell, D. B., Hine, R. E., Leaf, S., & Dils, R. (2003). Environmental costs of freshwater eutrophication in England and Wales. Environmental Science & Technology, 37(2), 201–208.CrossRefGoogle Scholar
  114. Qiu, G., & Ting, Y. P. (2014). Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresource Technology, 170(5), 221–229.CrossRefGoogle Scholar
  115. Qiu, G., Law, Y. M., Das, S., & Ting, Y. P. (2015). Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution. Environmental Science & Technology, 49(10), 6156–6163.CrossRefGoogle Scholar
  116. Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Chang, S. R. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arabian Journal of Chemistry, 7(1), 139–155.CrossRefGoogle Scholar
  117. Regy, S., Mangin, D., Klein, J. P., & Lieto, J. (2002). Phosphate recovery by struvite precipitation in a stirred reactor, phosphate recovery in waste water by crystallization (pp. 54–58). UK: CEEP.Google Scholar
  118. Roy, E. D. (2017). Phosphorus recovery and recycling with ecological engineering: a review. Ecological Engineering, 98, 213–227.CrossRefGoogle Scholar
  119. Sengupta, S., & Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 45(11), 3318–3330.CrossRefGoogle Scholar
  120. Shaw, S., Clark, S. M., & Henderson, C. M. B. (2000). Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2)·4H2O and xonotlite (Ca5Si6O17(OH)2): an in situ synchrotron study. Chemical Geology, 167(1–2), 129–140.CrossRefGoogle Scholar
  121. Shepherd, J. G., Sohi, S. P., & Heal, K. V. (2016). Optimising the recovery and re-use of phosphorus from wastewater effluent for sustainable fertiliser development. Water Research, 94, 155–165.CrossRefGoogle Scholar
  122. Shi, J., Lu, X., Yu, R., & Zhu, W. (2012). Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process. Bioresource Technology, 121(2), 183–189.CrossRefGoogle Scholar
  123. Shi, J., Lu, X., Xu, Z., & Fang, M. (2016). A novel anaerobic–anoxic/nitrifying- induced crystallization sequence batch reactor (a2n-ic-sbr) process for enhancing phosphorus recovery and nutrient removal. Desalination & Water Treatment, 57(16), 7358–7368.CrossRefGoogle Scholar
  124. Shih, Y. J., Abarca, R. R. M., Luna, M. D. G. D., Huang, Y. H., & Lu, M. C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466–473.Google Scholar
  125. Shilton, A. N. (2005). Pond treatment technology (pp. 77–99). London: IWA Publishing.Google Scholar
  126. Shilton, A. N., Powell, N., & Guieysse, B. (2012). Plant based phosphorus recovery from wastewater via algae and macrophytes. Current Opinion in Biotechnology, 23(6), 884–889.CrossRefGoogle Scholar
  127. Song, Y., Hahn, H. H., & Hoffmann, E. (2002). The effect of carbonate on the precipitation of calcium phosphate. Environmental Technology, 23(2), 207–215.CrossRefGoogle Scholar
  128. Song, Y., Weidler, P. G., Berg, U., Nüesch, R., & Donnert, D. (2006). Calcite-seeded crystallization of calcium phosphate for phosphorus recovery. Chemosphere, 63(2), 236–243.CrossRefGoogle Scholar
  129. Steen, I. (1988). Phosphorus availability in the 21st century: manage-ment of a non-renewable resource. Phosphorus Potassium, 217, 25–31.Google Scholar
  130. Suzuki, K., Tanaka, Y., Osada, T., & Waki, M. (2002). Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Research, 36(12), 2991–2998.CrossRefGoogle Scholar
  131. Takashi, W., Noriatsu, O., Kazuhiro, I., Tsutomu, F., & Haruyuki, I. (2008). Breeding of wastewater treatment yeasts that accumulate high concentrations of phosphorus. Applied Microbiology & Biotechnology, 80(2), 331–338.CrossRefGoogle Scholar
  132. Tanner, C. C., & Headley, T. R. (2011). Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering, 37(3), 474–486.CrossRefGoogle Scholar
  133. Tao, Q., Luo, J., Zhou, J., Zhou, S., Liu, G., & Zhang, R. (2014). Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresource Technology, 164(7), 402–407.CrossRefGoogle Scholar
  134. Tarayre, C., De, C. L., Charlier, R., Michels, E., Meers, E., Camargo-Valero, M., & Delvigne, F. (2016). New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresource Technology, 206, 264–274.CrossRefGoogle Scholar
  135. Tervahauta, T., Van, R. D., Flemming, R. L., Hernández, L. L., Zeeman, G., & Buisman, C. J. (2014). Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery. Water Research, 48(1), 632–642.CrossRefGoogle Scholar
  136. Ueno, Y., & Fujii, M. (2001). Three years’ experience of operating and selling recovered struvite from full scale plant. Environmental Technology, 22(11), 1373–1381.CrossRefGoogle Scholar
  137. Ugurlu, A., & Salman, B. (1998). Phosphorus removal by fly ash. Environment International A Journal of Environmental Science Risk & Health, 24(8), 911–918.Google Scholar
  138. Vaccari, D. A. (2009). Phosphorus: a looming crisis. Scientific American, 300(6), 54–59.CrossRefGoogle Scholar
  139. Vanotti, M., & Szogi, A. (2009). Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation. International Conference on Nutrient Recovery from Wastewater Streams: May 10–13.Google Scholar
  140. Vanotti, M. B., Garcia, M. C., Szogi, A. A., Hunt, P. G., & Millner, P. D. (2012). Method for recovery of phosphorus from animal wastewater. Weftec 2012, Water Environment Federation Technical Exhibition and Conference, 2012(7).Google Scholar
  141. Vendramelli, R. A., Vijay, S., & Yuan, Q. (2016). Phosphorus removal mechanisms in a facultative wastewater stabilization pond. Water Air & Soil Pollution, 227(11), 417.CrossRefGoogle Scholar
  142. Wang, X., Chen, Y., Yuan, B., Li, X., & Ren, Y. (2014). Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor. Bioresource Technology, 161(3), 340–347.CrossRefGoogle Scholar
  143. Watanabe, Y., & Kimura, K. (2006). Hybrid membrane bioreactor for water recycling and phosphorus recovery. Water Science & Technology A Journal of the International Association on Water Pollution Research, 53(7), 17–24.CrossRefGoogle Scholar
  144. Weng, B., Zhou, J., Zheng, S., Chen, X., Zhang, W., & Huang, Q. (2012). Field utilization of dried water hyacinth for phosphorous recovery from source-separated human urine. Journal of Environmental Protection, 3(8), 715–721.CrossRefGoogle Scholar
  145. Wild, D., Kisliakova, A., & Siegrist, H. (1996). P-fixation by Mg, Ca and zeolite a during stabilization of excess sludge from enhanced biological p-removal. Water Science & Technology, 34(1–2), 391–398.Google Scholar
  146. Woods, N. C., Daigger, G. T., & Sock, S. M. (2000). Sewage sludge reductions offered by phosphate recycling. Chimica Oggi, 18(5), 68–70.Google Scholar
  147. Wu, Q., Bishop, P. L., Keener, T. C., Stallard, J., & Stile, L. (2001). Sludge digestion enhancement and nutrient removal from anaerobic supernatant by Mg(OH)2 application. Water Science & Technology A Journal of the International Association on Water Pollution Research, 44(1), 161–166.Google Scholar
  148. Xie, M., Long, D. N., Price, W. E., & Elimelech, M. (2014). Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis–membrane distillation process. Environmental Science Technology & Letters, 1, 191–195.CrossRefGoogle Scholar
  149. Xu, J., & Shen, G. (2011). Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresource Technology, 102(2), 848–853.CrossRefGoogle Scholar
  150. Yaakob, Z., Kamarudin, K. F., Rajkumar, R., Takriff, M. S., & Badar, S. N. (2014). The current methods for the biomass production of the microalgae from wastewaters: an overview. World Applied Sciences Journal, 31(10), 1744–1758.Google Scholar
  151. Ye, Y., Jing, G., & Hu, B. (2015). Screening of phosphorus-accumulating fungi and their potential for phosphorus removal from waste streams. Applied Biochemistry and Biotechnology, 177(5), 1127–1136.CrossRefGoogle Scholar
  152. Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Li, J., Liu, Y., Zhang, X., & Jia, H. (2017). Insight into chemical phosphate recovery from municipal wastewater. Science of the Total Environment, 576, 159–171.CrossRefGoogle Scholar
  153. Yoshida, M., Tanabe, Y., Yonezawa, N., & Watanabe, M. M. (2012). Energy innovation potential of oleaginous microalgae. Biofuels, 3(6), 761–781.CrossRefGoogle Scholar
  154. You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2014). Electricity generation and struvite recovery from human urine using microbial fuel cells. World Renewable Energy Congress – WREC XIII, 91, 647–654.Google Scholar
  155. Yu, R., Geng, J., Ren, H., Wang, Y., & Xu, K. (2013). Struvite pyrolysate recycling combined with dry pyrolysis for ammonium removal from wastewater. Bioresource Technology, 132(2), 154–159.CrossRefGoogle Scholar
  156. Yu, M., Yin, D., Shi, J., Song, D., & Xu, Z. (2016). Phosphorus removal and recovery from high phosphorus wastewater by the HAP crystallization process. Oriental Journal of Chemistry, 32(1), 235–241.Google Scholar
  157. Yuan, Z., Pratt, S., & Batstone, D. J. (2012). Phosphorus recovery from wastewater through microbial processes. Current Opinion in Biotechnology, 23(6), 878–883.CrossRefGoogle Scholar
  158. Zhang, J., She, Q., Chang, V. W. C., Tang, C. Y., & Webster, R. D. (2014). Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering. Environmental Science & Technology, 48(6), 3386–3394.CrossRefGoogle Scholar
  159. Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P., & Herrmann, I. (2006). Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environmental Science & Technology, 40(17), 5193–5199.CrossRefGoogle Scholar
  160. Zhao, Y., Fang, Y., Jin, Y., Huang, J., Bao, S., Fu, T., He, Z., Wang, F., & Zhao, H. (2014). Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth. Bioresource Technology, 163, 82–91.CrossRefGoogle Scholar
  161. Zhao, Z. M., Song, X. S., Xiao, Y. P., Zhao, Y. F., Gong, Z. J., Lin, F. D., Ding, Y., Wang, W., & Qin, T. L. (2016). Influences of seasons, N/P ratios and chemical compounds on phosphorus removal performance in algal pond combined with constructed wetlands. Science of the Total Environment, 573, 906–914.CrossRefGoogle Scholar
  162. Zhi, W. T., Yue, C., Ong, Y. K., & Chung, T. S. (2016). Molecular design of nanofiltration membranes for the recovery of phosphorus from sewage sludge. ACS Sustainable Chemistry & Engineering, 4(10), 5580–5577.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lihong Peng
    • 1
    • 2
  • Hongliang Dai
    • 1
    • 2
  • Yifeng Wu
    • 1
  • Yonghong Peng
    • 1
    • 2
  • Xiwu Lu
    • 1
    • 2
  1. 1.School of Energy and EnvironmentSoutheast UniversityNanjingChina
  2. 2.ERC Taihu Lake Water Environment (Wuxi)WuxiChina

Personalised recommendations