Skip to main content

The Effectiveness of Zn Leaching from EAFD Using Caustic Soda

Abstract

Electric arc furnace dust (EAFD) is a toxic waste which is mainly rich in iron oxide, zinc, and lead. Hydrometallurgical extraction of zinc from Jordanian EAFD in alkaline medium was investigated; NaOH, NaHCO3, and Na2CO3 were used as leaching agents. The pH values for the prepared solutions were 8.3, 8.2, and 12.55 for NaHCO3, Na2CO3, and NaOH, respectively. The effect of NaOH concentration (1, 3, 5, 7, and 9 M), contact time (5 min to 3 h), temperature (20, 40, and 60), and solid-to-liquid ratio (SLR; 20, 40, 80, and 120 mg/ml) on the leachability of zinc from EAFD were tested. The initial EAFD and the resulting leach residues were characterized using X-ray diffraction (XRD) and X-ray fluorescence (XRF). EAFD contained 25.9% Zn, 18.0% Fe, and 3.2% Pb. A maximum zinc recovery of 92.9% was achieved using 6 M NaOH at 60 °C with solid loading of 20 g/L and 3 h leaching time. NaHCO3 and Na2CO3 were not efficient leaching agents for Zn extraction since the recoveries were only 2.6 and 4.5%, respectively. Zn and Pb were depleted in the residues with an E-factor of 0.5–0.6 and 0.1–0.25, respectively. Iron was enriched in the residues; the E-factor was around 2. The EAFD contained mainly zincite, franklinite, and magnetite. After 3 h leaching, only traces of zincite exist in the residues, while sylvite and halite were completely dissolved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abkhoshk, E., Jorjani, E., Al-Harahsheh, M. S., Rashchi, F., & Naazeri, M. (2014). Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy, 149, 153–167.

    CAS  Article  Google Scholar 

  2. Ahmed, O. H., Altarawneh, M., Al-Harahsheh, M., Jiang, Z.-T., & Dlugogorski, B. Z. (2017). Recycling of zincite (ZnO) via uptake of hydrogen halides. Physical Chemistry Chemical Physics.

  3. Al-Harahsheh, M., & Kingman, S. W. (2004). Microwave-assisted leaching—a review. Hydrometallurgy, 73, 189–203.

    CAS  Article  Google Scholar 

  4. Al-Harahsheh, M., Al-Otoom, A., Al-Makhadmah, L., Hamilton, I. E., Kingman, S., Al-Asheh, S., & Hararah, M. (2015). Pyrolysis of poly(vinyl chloride) and-electric arc furnacedust mixtures. Journal of Hazardous Materials, 299, 425–436.

    CAS  Article  Google Scholar 

  5. de Araujo, J. A., & Schalch, V. (2014). Recycling of electric arc furnace (EAF) dust for use in steel making process. Journal of Materials Research and Technology, 3, 274–279.

    Article  Google Scholar 

  6. Barrett, E. C., Nenniger, E. H., & Dziewinski, J. (1992). A hydrometallurgical process to treat carbon steel electric arc furnace dust. Hydrometallurgy, 30, 59–68.

    CAS  Article  Google Scholar 

  7. Caravaca, C., Cobo, A., & Alguacil, F. J. (1994). Considerations about the recycling of EAF flue dusts as source for the recovery of valuable metals by hydrometallurgical processes. Resources, Conservation and Recycling, 10, 35–41.

    Article  Google Scholar 

  8. Dreisinger, D. (1990). A challenge for the 1990s: the hydrometallurgical treatment of wastes and residues. JOM, 42, 27–27.

    Article  Google Scholar 

  9. Dutra, A. J. B., Paiva, P. R. P., & Tavares, L. M. (2006). Alkaline leaching of zinc from electric arc furnace steel dust. Minerals Engineering, 19, 478–485.

    CAS  Article  Google Scholar 

  10. Elgersma, F., Kamst, G. F., Witkamp, G. J., & van Rosmalen, G. M. (1992). Acidic dissolution of zinc ferrite. Hydrometallurgy, 29, 173–189.

    CAS  Article  Google Scholar 

  11. Frenay, J., Ferlay, S. & Hissel, J.: 1986, Zinc and lead recovery from EAF dusts by caustic soda process. In: Electric furnace proceedings, treatment options for carbon steel electric arc furnace dust, Iron Steel Society, pp. 171–175.

  12. Havlík, T., Vidor e Souza, B., Bernardes, A. M., Schneider, I. A., & Miškufová, A. (2006). Hydrometallurgical processing of carbon steel EAF dust. Journal of Hazardous Materials, 135, 311–318.

    Article  Google Scholar 

  13. Jha, M. K., Kumar, V., & Singh, R. J. (2001). Review of hydrometallurgical recovery of zinc from industrial wastes. Resources, Conservation and Recycling, 33, 1–22.

    Article  Google Scholar 

  14. Kavouras, P., Kehagias, T., Tsilika, I., Kaimakamis, G., Chrissafis, K., Kokkou, S., Papadopoulos, D., & Karakostas, T. (2007). Glass-ceramic materials from electric arc furnace dust. Journal of Hazardous Materials, 139, 424–429.

    CAS  Article  Google Scholar 

  15. Kekki, A., Aromaa, J., & Forcen, O. (2012). Leaching characteristics of EAF and AOF stainless steel production dusts. Physicochemical Problems of Mineral Processing, 48, 599–606.

    CAS  Google Scholar 

  16. Kelebek, S., Yörük, S., & Davis, B. (2004). Characterization of basic oxygen furnace dust and zinc removal by acid leaching. Minerals Engineering, 17, 285–291.

    CAS  Article  Google Scholar 

  17. Leclerc, N., Meux, E., & Lecuire, J.-M. (2003). Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy, 70, 175–183.

    CAS  Article  Google Scholar 

  18. Lenntech, B. V.: 2017, Zinc and water: reaction mechanisms, environmental impact and health effects. Distributieweg 3, EG Delfgauw: Lenntech.

  19. Li, H.-X., Wang, Y., & Cang, D.-Q. (2010). Zinc leaching from electric arc furnace dust in alkaline medium. Journal of Central South University of Technology, 17, 967–971.

    CAS  Article  Google Scholar 

  20. Mordogan, H., Cicek, T., & Isik, A. (1999). Caustic soda leach of electric arc furnace dust. J. Eng. Environ. Sci., 23, 199–207.

    CAS  Google Scholar 

  21. Nagib, S., & Inoue, K. (2000). Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy, 56, 269–292.

    CAS  Article  Google Scholar 

  22. Niubo, M., Fernandez, A. I., Chimenos, J. M., & Haurie, L. (2009). A possible recycling method for high grade steels EAFD in polymer composites. Journal of Hazardous Materials, 171, 1139–1144.

    CAS  Article  Google Scholar 

  23. Oishi, T., Yaguchi, M., Koyama, K., Tanaka, M., & Lee, J. C. (2008). Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis. Electrochimica Acta, 53, 2585–2592.

    CAS  Article  Google Scholar 

  24. Orhan, G. (2005). Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy, 78, 236–245.

    CAS  Article  Google Scholar 

  25. Oustadakis, P., Tsakiridis, P. E., Katsiapi, A., & Agatzini-Leonardou, S. (2010). Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part I. Characterization and leaching by diluted sulphuric acid. Journal of Hazardous Materials, 179, 1–7.

    CAS  Article  Google Scholar 

  26. Sofilić, T., Rastovčan-Mioč, A., Cerjan-Stefanović, Š., Novosel-Radović, V., & Jenko, M. (2004). Characterization of steel mill electric-arc furnace dust. Journal of Hazardous Materials, 109, 59–70.

    Article  Google Scholar 

  27. Stegemann, J. A., Roy, A., Caldwell, R. J., Schilling, P. J., & Tittsworth, R. (2000). Understanding environmental leachability of electric arc furnace dust. Journal of Environmental Engineering, 126, 112–120.

    CAS  Article  Google Scholar 

  28. Suetens, T., Klaasen, B., Van Acker, K., & Blanpain, B. (2014). Comparison of electric arc furnace dust treatment technologies using exergy efficiency. Journal of Cleaner Production, 65, 152–167.

    Article  Google Scholar 

  29. Vieira, C. M. F., Sanchez, R., Monteiro, S. N., Lalla, N., & Quaranta, N. (2013). Recycling of electric arc furnace dust into red ceramic. Journal of Materials Research and Technology, 2, 88–92.

    CAS  Article  Google Scholar 

  30. Xia, D. K., & Picklesi, C. A. (2000). Microwave caustic leaching of electric arc furnace dust. Minerals Engineering, 13, 79–94.

    CAS  Article  Google Scholar 

  31. Youcai, Z., & Stanforth, R. (2000). Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. Journal of Hazardous Materials, 80, 223–240.

    CAS  Article  Google Scholar 

  32. Zhang, Y., Li, X., Pan, L., Wei, Y., & Liang, X. (2010). Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite. Hydrometallurgy, 102, 95–100.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Batiha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Makhadmeh, L.A., Batiha, M.A., Al-Harahsheh, M.S. et al. The Effectiveness of Zn Leaching from EAFD Using Caustic Soda. Water Air Soil Pollut 229, 33 (2018). https://doi.org/10.1007/s11270-018-3694-4

Download citation

Keywords

  • Alkaline leaching
  • Electric arc furnace dust
  • Jordan
  • Zinc extraction