Advertisement

Estimating Base Cation Weathering Rates in the USA: Challenges of Uncertain Soil Mineralogy and Specific Surface Area with Applications of the PROFILE Model

  • Colin J. Whitfield
  • Jennifer N. Phelan
  • John Buckley
  • Christopher M. Clark
  • Scott Guthrie
  • Jason A. Lynch
Article

Abstract

The weathering release rate of base cations (BCw) from soil minerals is fundamentally important for terrestrial ecosystem growth, function, and sensitivity to acid deposition. Understanding BCw is necessary to reduce or prevent damage to acid-sensitive natural systems, in that this information is needed to both evaluate the effectiveness of existing policies, and guide establishment of further policies in the event they are required. Yet BCw is challenging to estimate. In this study, major sources of uncertainty associated with a process-based model (PROFILE) commonly used to estimate weathering rates were quantified in the context of efforts to quantify BCw for upland forest sites across the continental USA. These include uncertainty associated with parameterization of mineral content where horizon data are not available, stoichiometry of individual minerals, and specific surface area of soil and individual soil minerals. Mineral stoichiometry was not an important influence on BCw estimates (uncertainty < 1%). Characterizing B horizon mineralogy by averaging A and C horizons was found to be a minor (< 5%) contributor to uncertainty in some areas, but where mineralogy is known to vary with depth the uncertainty can be large. Estimating mineral-specific surface areas had a strong influence on estimated BCw, with rates increasing by as much as 250%. The greatest uncertainty in BCw estimates, however, was attributed to the particle size class-based method used to estimate the total specific surface area upon which weathering reactions can take place. The resulting uncertainty in BCw spanned multiple orders of magnitude at individual sites, highlighting this as the greatest challenge to ongoing efforts to produce robust BCw estimates across large spatial scales in the USA. Recommendations for improving estimates of BCw to support robust decision making for protection against terrestrial acidification are provided.

Keywords

Acid deposition Base cations Mineral weathering Mineralogy Specific surface area Uncertainty Upland forest 

Notes

Acknowledgments

The authors wish to thank Dani Kurz for helpful discussions during this work, Julian Aherne for provision of soil data, and Jamie Cajka and Marion Deerhake for their support.

Funding Information

This work was funded by the US Environmental Protection Agency (EPA) National Center for Environmental Assessment (NCEA) under contract EP-W-11-029. The views expressed in this manuscript are those of the authors and do not necessarily represent the views or policies of the US Environmental Protection Agency.

Supplementary material

11270_2018_3691_MOESM1_ESM.docx (170 kb)
ESM 1 (DOCX 170 kb)

References

  1. Barkman, A., & Alveteg, M. (2001). Identifying potentials for reducing uncertainty in critical load calculations using the PROFILE model. Water, Air, and Soil Pollution, 125, 33–54.CrossRefGoogle Scholar
  2. Blett, T. F., Lynch, J. A., Pardo, L. H., Huber, C., Haeuber, R., & Pouyat, R. (2014). FOCUS: a pilot study for national-scale critical loads development in the United States. Environmental Science & Policy, 38, 225–236.  https://doi.org/10.1016/j.envsci.2013.12.005 CrossRefGoogle Scholar
  3. Bobbink, R., Hicks, K., Galloway, J. N., Spranger, T., Alkemade, R., Ashmore, M., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20(1), 30–59.CrossRefGoogle Scholar
  4. Burns, D. A., Lynch, J. A., Cosby, B. J., Fenn, M. E., & Baron, J. S. (2011). National Acid Precipitation Assessment Program Report to congress 2011: an integrated assessment. Washington, DC: US EPA Clean Air Markets Division.Google Scholar
  5. Chadwick, O.A., Brimhall, G.H., Hendricks, D.M. (1990). From a black to a gray box — a mass balance interpretation of pedogenesis. Geomorphology, 3, 369–390.Google Scholar
  6. Environment Canada. (2004). Canadian acid deposition science assessment (p. 437). Downsview, ON: Meterological Service of Canada.Google Scholar
  7. Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. J., et al. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology.  https://doi.org/10.1002/joc.1688
  8. Deer, W.A., Howie, R.A., Zussman, J. (1978a). Rock-forming minerals. Framework silicates: Feldspars. 4A (2nd). London: The Geological Society.Google Scholar
  9. Deer, W. A., Howie, R. A., & Zussman, J. (1978b). Rock-forming minerals. Single-chain silicates (Vol. 2A, 2nd ed.p. 668). London: Longman ISBN 0-582-46522-2.Google Scholar
  10. Deer, W. A., Howie, R. A., & Zussman, J. (1978c). Rock-forming minerals. Double-chain silicates (Vol. 2B, 2nd ed.p. 764). London: The Geological Society ISBN 1-897799-77-2.Google Scholar
  11. Deer, W.A., Howie, R.A., Zussman, J. (1980). An introduction to the rock forming minerals. ISBN 0 582 44210 9.Google Scholar
  12. Deer, W. A., Howie, R. A., & Zussman, J. (1982). Rock-forming minerals. Sheet silicates: Micas (Vol. 3A, 2nd ed.p. 758). London: The Geological Society ISBN 1-86239-142-4.Google Scholar
  13. Driscoll, C. T., Driscoll, K. M., Fakhraei, H., & Civerolo, K. (2016). Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmospheric Environment, 146, 5–14.  https://doi.org/10.1016/j.atmosenv.2016.08.034 CrossRefGoogle Scholar
  14. Duarte, N., Pardo, L. H., & Robin-Abbott, M. J. (2013). Susceptibility of forests in the northeastern USA to nitrogen and sulfur deposition: critical load exceedance and forest health. Water Air and Soil Pollution, 224(2).  https://doi.org/10.1007/s11270-012-1355-6
  15. Fenn, M. E., Bytnerowicz, A., Schilling, S. L., & Ross, C. S. (2015). Atmospheric deposition of nitrogen, sulfur and base cations in jack pine stands in the Athabasca Oil Sands Region, Alberta, Canada. Environmental Pollution, 196, 497–510.  https://doi.org/10.1016/j.envpol.2014.08.023 CrossRefGoogle Scholar
  16. Hettelingh, J.-P., Posch, M., Slootweg, J., Reinds, G. J., Spranger, T., & Tarrason, L. (2007). Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water, Air, and Soil Pollution: Focus, 7, 379–384.CrossRefGoogle Scholar
  17. Hodson, M. E., Langan, S. J., & Meriau, S. (1998). Determination of mineral surface area in relation to the calculation of weathering rates. Geoderma, 83, 35–54.CrossRefGoogle Scholar
  18. Hodson, M. E., Langan, S. J., & Wilson, M. J. (1996). A sensitivity analysis of the PROFILE model in relation to the calculation of soil weathering rates. Applied Geochemistry, 11, 835–844.CrossRefGoogle Scholar
  19. Hodson, M. E., Langan, S. J., & Wilson, M. J. (1997). A critical evaluation of the use of the PROFILE model in calculating mineral weathering rates. Water, Air, and Soil Pollution, 98, 79–104.Google Scholar
  20. Jönsson, C., Warfvinge, P., & Sverdrup, H. (1995). Uncertainty in predicting weathering rate and environmental stress factors with the PROFILE model. Water, Air, and Soil Pollution, 81, 1–23.CrossRefGoogle Scholar
  21. Journet, E., Balkanski, Y., & Harrison, S. P. (2014). A new data set of soil mineralogy for dust-cycle modeling. Atmospheric Chemistry and Physics, 14(8), 3801–3816.  https://doi.org/10.5194/acp-14-3801-2014 CrossRefGoogle Scholar
  22. Koseva, I. S., Watmough, S. A., & Aherne, J. (2010). Estimating base cation weathering rates in Canadian forest soils using a simple texture-based model. Biogeochemistry, 101, 183–196.CrossRefGoogle Scholar
  23. McNulty, S. G., Cohen, E. C., Moore Myers, J. A., Sullivan, T. J., & Li, H. (2007). Estimates of critical acid loads and exceedances for forest soils across the conterminous United States. Environmental Pollution, 149, 281–292.CrossRefGoogle Scholar
  24. National Aeronautics and Space Administration (NASA). (2013). NLDAS Noah land surface model L4 monthly 0.125 x 0.125 degree, version 002, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center, http://mirador.gsfc.nasa.gov/collections/NLDAS_NOAH0125_M_002.shtml. Accessed 10.5067/NOXZSD0Z6JGD2).
  25. National Atmospheric Deposition Program (NRSP-3). 2015. NADP program office, Illinois state water survey, University of Illinois, Champaign, IL 61820.Google Scholar
  26. Nilsson, J., & Grennfelt, P. (1988). Critical loads for sulfur and nitrogen (p. 418). Miljorapport: Nordic Council of Ministers.Google Scholar
  27. Phelan, J., Belyazid, S., Kurz, D., Guthrie, S., Cajka, J., Sverdrup, H., et al. (2014). Estimation of soil base cation weathering rates with the PROFILE model to determine critical loads of acidity for forested ecosystems in Pennsylvania, USA: pilot application of a potential national methodology. Water, Air, and Soil Pollution, 225, 2109.  https://doi.org/10.1007/s11270-014-2109-4 CrossRefGoogle Scholar
  28. RTI International. 2013. Application of the base cation weathering (BCw) methodology and PROFILE model to calculate terrestrial critical acid loads in Pennsylvania—evaluation of USGS landscapes project database as source of soil mineralogy data. Final report. pp. 85.Google Scholar
  29. RTI International. (2016). Advancing critical loads estimates nationally: task 2 uncertainty analysis report (p. 60).Google Scholar
  30. Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.  https://doi.org/10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  31. Schreuder, H.T., Czaplewski, R., & Bailey, R.G. 1999. Combining mapped and statistical data in Forest ecological inventory and monitoring—supplementing an existing system, available online at https://data.fs.usda.gov/geodata/edw/datasets.php?dsetCategory=geoscientificinformation.Google Scholar
  32. Schwede, D. B., & Lear, G. G. (2014). A novel hybrid approach for estimating total deposition in the United States. Atmospheric Environment, 92, 207–220.  https://doi.org/10.1016/j.atmosenv.2014.04.008 CrossRefGoogle Scholar
  33. Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano, F., Kilburn, J. E., & Fey, D. L. (2013). Geochemical and mineralogical data for soils of the conterminous United States. In U. S. G. Survey (Ed.), (Vol. Data Series 801, pp. 19).Google Scholar
  34. Stendahl, J., Akselsson, C., Melkerud, P.-A., & Belyazid, S. (2013). Pedon-scale silicate weathering: comparison of the PROFILE model and the depletion method at 16 forest sites in Sweden. Geoderma, 211–212, 65–74.  https://doi.org/10.1016/j.geoderma/2013.07.005 CrossRefGoogle Scholar
  35. Sverdrup, H., & Stjernquist, I. (Eds.). (2002). Managing forest ecosystems: Developing principles and models for sustainable forestry in Sweden. Lund: The Netherlands: Kluwer Academic Publishers.Google Scholar
  36. Sverdrup, H., & Warfvinge, P. (1993). Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8, 273–283.CrossRefGoogle Scholar
  37. UNECE. (2004). Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks, trends. In Convention on long-range transboundary air pollution (p. V.-13).Google Scholar
  38. U.S. Department of Agriculture – National Reserouces Conservation Service (USDA-NRCS). (2013). Soil survey geographic (SSURGO) database for Pennsylvania, http://soildatamart.nrcs.usda.gov Google Scholar
  39. U.S. Environmental Protection Agency (USEPA). (2009). Risk and exposure assessment for review of the secondary national ambient air quality standards for oxides of nitrogen and oxides of sulfur. EPA-452/R-09-008a. Office of air Quality Planning and Standards.Google Scholar
  40. U.S. Forest Service (USFS). (2008). National Forest type dataset, http://fsgeodata.fs.fed.us/rastergateway/forest_type/ Google Scholar
  41. van der Salm, C. (2001). Assessment of the regional variation in weathering rates of loess and clay soils in the Netherlands. Water Air and Soil Pollution, 131(1–4), 217–243.  https://doi.org/10.1023/a:1011912120842 CrossRefGoogle Scholar
  42. Warfvinge, P., & Sverdrup, H. (1992). Calculating critical loads of acid deposition with PROFILE – A steady-state soil chemistry model. Water, Air, and Soil Pollution, 63, 119–143.CrossRefGoogle Scholar
  43. Watmough, S. A., Eimers, C., & Baker, S. (2016). Impediments to recovery from acid deposition. Atmospheric Environment, 146, 15–27.  https://doi.org/10.1016/j.atmosenv.2016.03.021 CrossRefGoogle Scholar
  44. Whitfield, C. J., Aherne, J., Dillon, P. J., & Watmough, S. A. (2007). Modelling acidification, recovery and target loads for headwater catchments in Nova Scotia, Canada. Hydrology and Earth System Sciences, 11, 951–963.CrossRefGoogle Scholar
  45. Whitfield, C. J., Aherne, J., & Watmough, S. A. (2009). Modeling soil acidification in the Athabasca Oil Sands region, Alberta, Canada. Environmental Science & Technology, 43, 5844–5850.CrossRefGoogle Scholar
  46. Whitfield, C. J., Aherne, J., Cosby, B. J., & Watmough, S. A. (2010). Modelling boreal lake catchment response to anthropogenic acid deposition. Journal of Limnology, 69(Suppl. 1), 135–146.CrossRefGoogle Scholar
  47. Whitfield, C. J., & Watmough, S. A. (2012). A regional approach for mineral soil weathering estimation and critical load assessment in boreal Saskatchewan, Canada. Science of the Total Environment, 437, 165–172.CrossRefGoogle Scholar
  48. Whitfield, C. J., & Reid, C. (2013). Predicting surface area of coarse-textured soils: implications for weathering rates. Canadian Journal of Soil Science, 93, 621–630.  https://doi.org/10.4141/CJSS2012-009 CrossRefGoogle Scholar
  49. Wilson, M. J. (2013). Rock-forming minerals. Sheet silicates: clay minerals. 3C (2). London: The Geological Society. p. 724. ISBN 978-1-86239-359-2.Google Scholar
  50. Zak, S. K., Beven, K., & Reynolds, B. (1997). Uncertainty in the estimation of critical loads: a practical methodology. Water, Air, and Soil Pollution, 98, 297–316.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Colin J. Whitfield
    • 1
  • Jennifer N. Phelan
    • 2
  • John Buckley
    • 2
  • Christopher M. Clark
    • 3
  • Scott Guthrie
    • 2
  • Jason A. Lynch
    • 4
  1. 1.School of Environment and Sustainability and Global Institute for Water Security University of SaskatchewanSaskatoonCanada
  2. 2.Research Triangle Institute InternationalResearch Triangle ParkUSA
  3. 3.National Center for Environmental Assessment, US Environmental Protection AgencyArlingtonUSA
  4. 4.Office of Air and Radiation, Office of Atmospheric Programs, Clean Air Markets DivisionUS Environmental Protection AgencyWashington, DCUSA

Personalised recommendations