Successful Biodegradation of a Refractory Pharmaceutical Compound by an Indigenous Phenol-Tolerant Pseudomonas aeruginosa Strain

  • Sabra Hemidouche
  • Lidia Favier
  • Abdeltif Amrane
  • Patrick Dabert
  • Sophie Le Roux
  • Zahra Sadaoui


This study provides an alternative solution for the bioremediation of a recalcitrant pharmaceutical micropollutant. Clofibric acid (CLA) was chosen as target molecule, because of its environmental persistence and resistance to wastewater treatment technologies. The aim of this study was to investigate the potential of a phenol-resistant Pseudomonas aeruginosa strain isolated from the activated sludge to degrade CLA. In order to evaluate the effect of acclimation process with glucose as carbon co-substrate, two protocols were performed, in which the transfer of the inoculum is carried out either in the exponential growth phase or in the decline phase. The results showed a removal efficiency of CLA of 35% when cells in the decline phase were used for inoculation. In contrast, a very low removal yield (10%) was achieved when cells harvested in the exponential phase were used as inoculum. This work is the first one reporting on the capability of this bacterium to remove this drug. The obtained data showed that the isolated strain is able to degrade target molecule and might be a promising agent for the elimination of this refractory compound.


Pharmaceutically active compounds Clofibric acid Biodegradation Pseudomonas aeruginosa RZS9 Acclimation 


  1. Awasthi, S. K., Ashfaq, M., & Singh, S. (2009). Effect of glucose and chloramphenicol on ABS biodegradation by a bacterial consortium. Biology and Medicine, 1, 15–19.Google Scholar
  2. Cardoso, O., Porcher, J. M., & Sanchez, W. (2014). Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge. Chemosphere, 115, 20–30.CrossRefGoogle Scholar
  3. Chen, S. H., & Aitken, M. D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environmental Science and Technology, 33, 435–439.CrossRefGoogle Scholar
  4. Chong, N. M. (2009). Modeling the acclimation of activated sludge to a xenobiotic. Bioresource Technology, 100, 5750–5756.CrossRefGoogle Scholar
  5. Chong, N. M., & Lin, T. Y. (2007). Measurement of the degradation capacity of activated sludge for a xenobiotic organic. Bioresource Technology, 98, 1124–1127.CrossRefGoogle Scholar
  6. Chong, N. M., Huang, W. S., & Chen, Y. S. (2008). Loss of degradation capacity of activated sludge for a xenobiotic after a period without its influent. Bioresource Technology, 99, 8729–8734.CrossRefGoogle Scholar
  7. Cruz-Morató, C., Jelic, A., Perez, S., Petrovic, M., Barceló, D., Marco-Urrea, E., Sarrà, M., & Vicent, T. (2013). Continuous treatment of clofibric acid by Trametes versicolor in a fluidized bed bioreactor: Identification of transformation products and toxicity assessment. Biochemical Engineering Journal, 75, 79–85.CrossRefGoogle Scholar
  8. Doll, T. E., & Frimmel, F. H. (2003). Fate of pharmaceuticals photodegradation by simulated solar UV-light. Chemosphere, 52, 1757–1769.CrossRefGoogle Scholar
  9. Domaradzka, D., Guzik, U., Hupert-Kocurek, K., & Wojcieszyńska, D. (2015). Cometabolic degradation of naproxen by Planococcus sp. strain S5. Water, Air, & Soil Pollution, 226, 1–8.CrossRefGoogle Scholar
  10. Evangelista, S., Cooper, D. G., & Yargeau, V. (2010). The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids. Chemosphere, 79, 1084–1088.CrossRefGoogle Scholar
  11. Fakhruddin, A. N. M., & Quilty, B. (2005). The influence of glucose and fructose on the degradation of 2-chlorophenol by Pseudomonas putida CP1. World Journal of Microbiology and Biotechnology, 21, 1541–1548.CrossRefGoogle Scholar
  12. Favier, L., Simion, A. I., Rusu, L., Pacala, M. L., Grigoras, C., & Bouzaza, A. (2015). Removal of an organic refractory compound by photocatalysis in batch reactor—a kinetic study. Environmental Engineering and Management Journal, 14, 1327–1338.Google Scholar
  13. Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159.CrossRefGoogle Scholar
  14. Ferro Orozco, A. M., Lobo, C. C., Contreras, E. M., & Zaritzky, N. E. (2013). Biodegradation of bisphenol-A (BPA) in activated sludge batch reactors: analysis of the acclimation process. International Biodeterioration and Biodegradation, 85, 392–399.CrossRefGoogle Scholar
  15. Fischer, J., Kappelmeyer, U., Kastner, M., Schauer, F., & Heipieper, H. J. (2010). The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by biostimulation with phenol. International Biodeterioration and Biodegradation, 64, 324–330.CrossRefGoogle Scholar
  16. Gauthier, H., Yargeau, V., & Cooper, D. G. (2010). Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Science of the Total Environment, 408, 1701–1706.CrossRefGoogle Scholar
  17. Godon, J. J., Zumstein, E., Dabert, P., Habouzit, F., & Moletta, R. (1997). Microbial 16S rDNA diversity in an anaerobic digester. Water Science and Technology, 36, 49–55.Google Scholar
  18. Gren, A. E., Wojcieszynska, D., Guzik, U., Perkosz, M., & Hupert-Kocurek, K. (2010). Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin. World Journal of Microbiology and Biotechnology, 26, 290–295.CrossRefGoogle Scholar
  19. Grenni, P., Patrolecco, L., Ademollo, N., Tolomei, A., & Barra Caracciolo, A. (2013). Degradation of gemfibrozil and naproxen in a river water ecosystem. Microchemical Journal, 107, 158–164.CrossRefGoogle Scholar
  20. Holt, J., Krieg, N., Sneath, P., Staley, J., & Williams, S. (1994). Bergey’s manual of determinative bacteriology (ninth ed.). Baltimore: Williams & Wilkins.Google Scholar
  21. Huang, Z., Wang, P., Li, H., Lin, K., Lu, Z., Guo, X., & Liu, Y. (2014). Community analysis and metabolic pathway of halophilic bacteria for phenol degradation in saline environment. International Biodeterioration and Biodegradation, 94, 115–120.CrossRefGoogle Scholar
  22. Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2007). The occurrence and removal of selected pharmaceutical compounds in a sewage treatment works utilizing activated sludge treatment. Environmental Pollution, 145, 738–744.CrossRefGoogle Scholar
  23. Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45, 57–88.CrossRefGoogle Scholar
  24. Khetan, S. K., & Collins, T. J. (2007). Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chemical Reviews, 107, 2319–2364.CrossRefGoogle Scholar
  25. Kosjek, T., Heath, E., Pérez, S., Petrović, M., & Barceló, D. (2009). Metabolism studies of diclofenac and clofibric acid in activated sludge bioreactors using liquid chromatography with quadrupole - time-of-flight mass spectrometry. Journal of Hydrology, 372, 109–117.CrossRefGoogle Scholar
  26. Larcher, S., & Yargeau, V. (2011). Biodegradation of sulfamethoxazole by individual and mixed bacteria. Applied Microbiology and Biotechnology, 91, 211–218.CrossRefGoogle Scholar
  27. Liu, Z., Dai, Y., Huan, Y., Liu, Z., Sun, L., Zhou, Q., Zhang, W., Sang, Q., Wei, H., & Yuan, S. (2013). Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia. Applied Microbiology and Biotechnology, 97, 6537–6547.CrossRefGoogle Scholar
  28. Loh, K. C., & Wang, S. J. (1997). Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Biodegradation, 8, 329–338.CrossRefGoogle Scholar
  29. Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473-474, 619–641.CrossRefGoogle Scholar
  30. Mangat, S. S., & Elefsiniotis, P. (1999). Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in sequencing batch reactors. Water Research, 33, 861–867.CrossRefGoogle Scholar
  31. Murcia, M. D., Gómez, M., Gómez, E., Gómez, J. L., Sinada, F. A., & Christofi, N. (2012). Testing a Pseudomonas putida strain for 4-chlorophenol degradation in the presence of glucose. Desalination and Water Treatment, 40, 33–37.CrossRefGoogle Scholar
  32. Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managaki, S., Sato, N., & Takada, H. (2007). Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 41, 4373–4382.CrossRefGoogle Scholar
  33. Pinto, A. P., Serrano, C., Pires, T., Mestrinho, E., Dias, L., Martins Teixeira, D., & Caldeira, A. T. (2012). Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Science of the Total Environment, 435-436, 402–410.CrossRefGoogle Scholar
  34. Popa Ungureanu, C., Favier, L., Bahrim, G., & Amrane, A. (2015). Response surface optimization of experimental conditions for carbamazepine biodegradation by Streptomyces MIUG 4.89. New Biotechnology, 32, 347–357.CrossRefGoogle Scholar
  35. Popa Ungureanu, C., Favier, L., & Bahrim, G. (2016). Screening of soil bacteria as potential agents for drugs biodegradation: a case study with clofibric acid: Soil bacteria as potential agents for drugs biodegradation. Journal of Chemical Technology and Biotechnology, 91, 1646–1653.CrossRefGoogle Scholar
  36. Popa, C., Favier, L., Dinica, R., Semrany, S., Djelal, H., Amrane, A., & Bahrim, G. (2014). Potential of newly wild Streptomyces stains as agents for the biodegradation of a recalcitrant pharmaceutical, carbamazepine. Environmental Technology, 35, 3082–3091.CrossRefGoogle Scholar
  37. Quintana, J., Weiss, S., & Reemtsma, T. (2005). Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Research, 39, 2654–2664.CrossRefGoogle Scholar
  38. Sacher, F., Lange, F. T., Brauch, H. J., & Blankenhorn, I. (2001). Pharmaceuticals in ground waters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. Journal of Chromatography A, 938, 199–210.CrossRefGoogle Scholar
  39. Sahinkaya, E., & Dilek, F. B. (2005). Biodegradation of 4-chlorophenol by aclimated and unacclimated activated sludge—evaluation of biokinetic coefficients. Environmental Research, 99, 243–252.CrossRefGoogle Scholar
  40. Sahinkaya, E., & Dilek, F. B. (2007). Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures. Journal of Biotechnology, 127, 716–726.CrossRefGoogle Scholar
  41. Salgado, R., Noronha, J. P., Oehmen, A., Carvalho, G., & Reis, M. A. M. (2010). Analysis of 65 pharmaceuticals and personal care products in 5 wastewater treatment plants in Portugal using a simplified analytical methodology. Water Science and Technology, 62, 2862–2871.CrossRefGoogle Scholar
  42. Salgado, R., Oehmen, A., Carvalho, G., Noronha, J. P., & Reis, M. A. M. (2012). Biodegradation of clofibric acid and identification of its metabolites. Journal of Hazardous Materials, 241-242, 182–189.CrossRefGoogle Scholar
  43. Satsangee, R., & Ghosh, P. (1990). Anaerobic degradation of phenol using an acclimated mixed culture. Applied Microbiology and Biotechnology, 34, 127–130.CrossRefGoogle Scholar
  44. Semrany, S., Favier, L., Djelal, H., Taha, S., & Amrane, A. (2012). Bioaugmentation: possible solution in the treatment of bio-refractory organic compounds (bio-ROCs). Biochemical Engineering Journal, 69, 75–86.CrossRefGoogle Scholar
  45. Tauxe-Wuersch, A., De Alencastro, L. F., Grandjean, D., & Arradellas, J. T. (2005). Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Research, 39, 1761–1772.CrossRefGoogle Scholar
  46. Tran, N. H., Urase, T., & Kusakabe, O. (2009). The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds. Journal of Hazardous Materials, 171, 1051–1057.CrossRefGoogle Scholar
  47. Tran, N. H., Urase, T., Ngo, H. H., Hu, J., & Ong, S. L. (2013). Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresource Technology, 146, 721–731.CrossRefGoogle Scholar
  48. Wang, S. J., & Loh, K. C. (1999). Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate. Biodegradation, 10, 261–269.CrossRefGoogle Scholar
  49. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.CrossRefGoogle Scholar
  50. Winkler, M., Lawrence, J. R., & Neu, T. (2001). Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Research, 35, 3197–3205.CrossRefGoogle Scholar
  51. Yamanaka, H., Moriyoshi, K., Ohmoto, T., Ohe, T., & Sakai, K. (2007). Degradation of bisphenol A by Bacillus pumilus isolated from kimchi, a traditionally fermented food. Applied Biochemistry and Biotechnology, 136, 39–51.CrossRefGoogle Scholar
  52. Ye, F. X., & Shen, D. S. (2004). Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period. Chemosphere, 54, 1573–1580.CrossRefGoogle Scholar
  53. Zhang, C., Zeng, G., Yuan, L., Yu, J., Li, J., Huang, G., & Liu, H. (2007). Aerobic degradation of bisphenol a by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste. Chemosphere, 68, 181–190.CrossRefGoogle Scholar
  54. Zhang, D.Q., Gersberg, R.M., Zhu, J., Hua, T., Jinadasa, K.B.S.N., & Tan, S.K. (2012). Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland. Environmental Pollution, 167, 124–131.CrossRefGoogle Scholar
  55. Zhang, D., Gersberg, R.M., Ng, W.J., & Tan, S.K. (2014). Removal of pharmaceuticals and personal careproducts in aquatic plant-based systems: A review. Environmental Pollution, 184, 620–639.CrossRefGoogle Scholar
  56. Zuccato, E., Castiglioni, S., Bagnati, R., Melis, M., & Fanelli, R. (2010). Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of Hazardous Materials, 179, 1042–1048.CrossRefGoogle Scholar
  57. Zwiener, C., & Frimmel, F. (2003). Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac. Science of the Total Environment, 309, 201–221.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et de Génie des ProcédésUniversité des Sciences et de la Technologie Houari—BoumedieneAlgerAlgeria
  2. 2.Centre de Recherche Scientifique et Technique en Analyses Physico-ChimiquesBou-IsmailAlgeria
  3. 3.Univ RennesEcole Nationale Supérieure de Chimie de RennesRennesFrance
  4. 4.Irstea, UR OPAALERennes CedexFrance

Personalised recommendations