Equilibrium, Kinetic and Optimization Studies for the Adsorption of Tartrazine in Water onto Activated Carbon from Pecan Nut Shells

  • J. Torres-Pérez
  • Y. Huang
  • P. Hadi
  • H. Mackey
  • Gordon McKay


A series of experimental studies has been carried out using a novel, sustainable adsorbent to remove Tartrazine dye, namely, a steam activated carbon obtained from pecan nut shells. The dye also known as acid yellow 23 has been used in the food industry but is now classified as a carcinogen. The experimental equilibrium data has been used to test four equilibrium isotherm models and then the best fitting model was optimised to minimise the mass of adsorbent used to save costs in industrial applications using a two-stage batch adsorption system. The experimental contact time data has also been modelled and the best fit model has been used to optimise/minimise the contact time for a range of process conditions.


Pecan nut shell biomass Active carbon Tartrazine dye adsorption Dye wastewater treatment 


  1. Abbasi, M., & Habibi, M. M. (2016). Optimization and characterization of direct blue 71 removal using nanocomposite of chitosan-MWCNTs: central composite design modeling. Journal of the Taiwan Institute of Chemical Engineers, 62, 112–121.CrossRefGoogle Scholar
  2. Ahmad, M. A., & Ahmad, N. (2014). Adsorptive removal of malachite green dye using durian seed-based activated carbon. Water, Air, & Soil Pollution, 225, 2057–2065.CrossRefGoogle Scholar
  3. Allen, S. J., Gan, Q., Matthews, R., Johnson, P. A., & McKay, G. (2004). Optimisation of isotherm analysis for basic dye adsorption by kudzu. Adsorption, 10(2004), 1423–1429.Google Scholar
  4. Banat, F., Al-Asheh, S., & Al-Makhadmeh, L. (2003). Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochemistry, 39, 193–202.CrossRefGoogle Scholar
  5. Cha, S.-H., Son, J.-H., Jamal, Y., Zafar, M., & Park, H.-S. (2016). Characterization of polyhydroxyalkanoates extracted from wastewater sludge under different environmental conditions. Biochemical Engineering Journal, 112, 1–12.CrossRefGoogle Scholar
  6. Chan, L. S., Cheung, W. H., Allen, S. J., & McKay, G. (2009). Separation of acid-dyes mixture by bamboo derived active carbon. Separation and Purification Technology, 67, 166–172.CrossRefGoogle Scholar
  7. Chen, B., Hui, C. W., & McKay, G. (2001). Pore-surface diffusion modelling for dyes from effluents on pith. Langmuir, 17, 740–748.CrossRefGoogle Scholar
  8. Cho, D.-W., Jeon, B.-H., Chon, C.-M., Schwartz, F. W., Jeong, Y., & Song, H. (2015). Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution. Journal of Industrial and Engineering Chemistry, 28, 60–66.CrossRefGoogle Scholar
  9. Dawood, S., Sen, T. K., & Phan, C. (2013). Synthesis and characterisation of novel activated carbon from waste biomass and its application in the removal of Congo red dye from aqueous solution by adsorption. Water, Air, & Soil Pollution, 225, 1818–1827.CrossRefGoogle Scholar
  10. Ding, Z., Wan, Y., Hu, X., Wang, S., Zimmerman, A. R., & Gao, B. (2016). Sorption of lead and methylene blue onto hickory biochars from different pyrolysis temperatures: importance of physicochemical properties. Journal of Industrial and Engineering Chemistry, 37, 261–267.CrossRefGoogle Scholar
  11. Fauzia, S., Furqani, F., Zein, R., & Munaf, E. (2015). Adsorption and reaction kinetics of tartrazine by using Annona muricata L seeds. Journal of Chemical and Pharmaceutical Research, 7(1), 573–582.Google Scholar
  12. Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385–470.Google Scholar
  13. Habila, M. A., Alothman, Z. A., Al-Tamrah, S. A., Ghafar, A. A., & Soylak, M. (2015). Activated carbon from waste as an efficient adsorbent for malathion for detection and removal purposes. Journal of Industrial and Engineering Chemistry, 32, 336–344.CrossRefGoogle Scholar
  14. Hadi, M., Samarghandi, M. R., & McKay, G. (2011). Simplified fixed bed design models for the adsorption of acid dyes on novel pine cone derived activated carbon. Water, Air, & Soil Pollution, 218, 197–212.CrossRefGoogle Scholar
  15. Heibati, B., Rodriguez-Couto, S., Amrane, A., Rafatullah, M., Hawari, A., & Al-Ghouti, M. A. (2014). Uptake of reactive black 5 by pumice and walnut activated carbon: chemistry and adsorption mechanisms. Journal of Industrial and Engineering Chemistry, 20, 2939–2947.CrossRefGoogle Scholar
  16. Ho, Y. S., & McKay, G. (1999a). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  17. Ho, Y. S., & McKay, G. (1999b). A kinetic study of dye sorption by biosorbent waste product pith. Resources, Conservation and Recycling, 25, 171–193.CrossRefGoogle Scholar
  18. Ho, Y. S., Ng, J. C. Y., & McKay, G. (2000). Kinetics of pollutant sorption by biosorbents: review. Separation and Purification Methods, 29, 189–232.CrossRefGoogle Scholar
  19. Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air, & Soil Pollution, 141, 1–33.CrossRefGoogle Scholar
  20. Ip, A. W. M., Barford, J. P., & McKay, G. (2010). A comparative study on the kinetics and mechanisms of removal of reactive black 5 by adsorption onto activated carbons and bone char. Chemical Engineering Journal, 157, 434–442.CrossRefGoogle Scholar
  21. Karaca, S., Gurses, A., & Bayrak, R. (2004). Effect of some pretreatments on the adsorption of methylene blue by Balkaya lignite. Energy Conversion and Management, 45, 1693–1704.CrossRefGoogle Scholar
  22. Lagergren, S. (1898). Zur Theorie der sogenannten adsorption geloster stoffe. Kungliga Sevens. Vetens. Handlingar, 24(1), 39–49.Google Scholar
  23. Langmuir, I. (1908). The adsorption of cases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1362–1368.Google Scholar
  24. Lemlikchi, W., Drouiche, N., Belaicha, N., Oubagha, N., Baaziz, B., & Mecherri, M. O. (2015). Kinetic study of the adsorption of textile dyes on synthetic hydroxyapatite in aqueous solution. Journal of Industrial and Engineering Chemistry, 32, 233–237.CrossRefGoogle Scholar
  25. McKay, G. (1995) Use of adsorbents for the removal of pollutants from wastewater. Boca Raton: CRC Press.Google Scholar
  26. McKay, G. (1998). Application of surface diffusion model to the adsorption of dyes on bagasse pith. Adsorption, 4, 361–372.CrossRefGoogle Scholar
  27. McKay, G., & Ho, Y. S. (1999). The sorption of lead (II) ions on peat. Water Research, 33, 578–584.CrossRefGoogle Scholar
  28. McKay, G., El-Geundi, M., & Nassar, M. M. (1987). Equilibrium studies during the removal of dyestuffs from aqueous solutions using bagasse pith. Water Research, 21, 1513–1520.CrossRefGoogle Scholar
  29. McKay, G., El Geundi, M., & Nassar, M. M. (1997). Adsorption model for the removal of acid dyes from effluent by bagasse pith. Adsorption Science and Technology, 15, 753–776.CrossRefGoogle Scholar
  30. McKay, G., Porter, J. F., & Prasad, G. R. (1999). The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water, Air, & Soil Pollution, 114, 423–438.CrossRefGoogle Scholar
  31. Mui, E. L. K., Cheung, W. H., Valix, M., & McKay, G. (2010a). Dye adsorption onto char from bamboo. Journal of Hazardous Materials, 177(1–3), 1001–1005.CrossRefGoogle Scholar
  32. Mui, E. L. K., Cheung, W. H., Valix, M., & McKay, G. (2010b). Activated carbons from bamboo scaffolding using acid activation. Separation and Purification Technology, 74, 213–218.CrossRefGoogle Scholar
  33. Nadeem, M., Tan, I. B., Haq, M. R. U., Shahid, S. A., Shah, S. S., & McKay, G. (2006). Sorption of lead from aqueous solution by chickpea leaves, stems and fruit peelings. Adsorption Science and Technology, 24, 269–282.CrossRefGoogle Scholar
  34. National Center for Biotechnology Information (2015). Tartrazine. Bethesda: PubChem Substance.Google Scholar
  35. Pereira, M. F. R., Soares, S. F., Orfao, J. J. M., & Figueiredo, J. L. (2003). Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 41, 811–821.CrossRefGoogle Scholar
  36. Poots, V. J. P., McKay, G., & Healy, J. J. (1976). The removal of acid dye from effluent using naturally occurring adsorbents. II. Wood. Water Research, 10, 1067–1076.CrossRefGoogle Scholar
  37. Pezoti, O., Cazetta, A.L., Souza, I.P.A.F., Bedin, K.C., Martins, A.C., Silva, T.L., & Almeida, V.C. (2014) Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.) Journal of Industrial and Engineering Chemistry, 20(6), 4401–4407.CrossRefGoogle Scholar
  38. Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63, 1024–1032.CrossRefGoogle Scholar
  39. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.CrossRefGoogle Scholar
  40. Robinson, T., Chandran, B., & Nigam, P. (2002). Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk. Environment International, 28, 29–33.CrossRefGoogle Scholar
  41. Rozada, F., Calvo, L. F., Garcia, A. I., Martin-Villacorta, J., & Otero, M. (2003). Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresource Technology, 87, 221–230.CrossRefGoogle Scholar
  42. Saime, W., Ngah, W., Farhana, N., & Ariff, M. (2010). Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water, Air, & Soil Pollution, 206, 225–236.CrossRefGoogle Scholar
  43. Sen, T. K., Afroze, S., & Ang, H. M. (2011). Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water, Air, & Soil Pollution, 218, 499–515.CrossRefGoogle Scholar
  44. Sips, R. (1948). Combined form of Langmuir and Freundlich equations. The Journal of Physical Chemistry, 16, 490–495.CrossRefGoogle Scholar
  45. Torres-Pérez, O. J., Soria-Serna, L. A., Solache-Ríos, M., & McKay, G. (2015). One step carbonization/activation process for carbonaceous material preparation from pecan shells for tartrazine removal and regeneration after saturation. Adsorption Science and Technology, 83(10), 895–913.CrossRefGoogle Scholar
  46. Valix, M., Cheung, W. H., & McKay, G. (2004). Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere, 56, 593–501.CrossRefGoogle Scholar
  47. Venkata, M. S., Chandrasekhar, R. N., & Karthikeyan, J. (2002). Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. Journal of Hazardous Materials B, 90, 189–204.CrossRefGoogle Scholar
  48. Wang, Z. X., Barford, J. P., Hui, C. W., & McKay, G. (2015). Kinetic and equilibrium studies of hydrophilic and hydrophobic rice husk cellulose fibers used as oil spill sorbents. Chemical Engineering Journal, 281, 961–969.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • J. Torres-Pérez
    • 1
  • Y. Huang
    • 2
  • P. Hadi
    • 2
  • H. Mackey
    • 3
  • Gordon McKay
    • 3
  1. 1.Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico BiológicasUniversidad Autónoma de Ciudad JuárezCiudad JuárezMexico
  2. 2.Department of Chemical and Biomolecular Engineering, Faculty of EngineeringHong Kong University of Science and TechnologyKowloonHong Kong
  3. 3.Division of Sustainable Development, Division of Sustainability, College of Science and EngineeringHamad Bin Khalifa University, Education City, Qatar FoundationDohaQatar

Personalised recommendations