Skip to main content
Log in

Influence of Acid Mine Drainage, and Its Remediation, on Lakewater Quality and Benthic Invertebrate Communities

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The abandoned Aldermac Mine in Québec, Canada, has been a source of acid mine drainage to Lake Arnoux since 1946. Restoration of the site was undertaken in 2008 and completed in 2010. We compared lakewater chemistry and benthic invertebrate communities in the spring of 2010, prior to complete restoration, and in spring 2011, when acid mine drainage was no longer entering the lake. Between these years, lakewater pH increased by about one unit and the concentrations of many trace metals declined substantially. In 2010, benthic taxonomic richness increased significantly with distance from the source of contamination, whereas after restoration, there was no longer a clear trend. Communities in highly contaminated stations tended to be dominated by burrowing taxa such as larvae of Chironomus (Chironomidae) and Oligochaeta, whereas less contaminated stations had taxonomic and functional communities that were more diverse. In the year following recovery, some new taxa appeared (Trichoptera, Odonata, and the Ceratopogonidae Bezzia), whereas the populations of an acid-tolerant Chironomus species declined. However, only larger individuals exhibited a significant response to pH and metal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azcue, J. M., Mudroch, A., Rosa, F., Hall, G. E. M., Jackson, T. A., & Reynoldson, T. (1995). Trace elements in water, sediments, porewater, and biota polluted by tailings from an abandoned gold mine in British Columbia, Canada. Journal of Geochemical Exploration, 52(1–2), 25–34 https://doi.org/10.1016/0375-6742(94)00028-A.

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Appendix B: regional tolerance value, functionnal feeding groups and habit/behavior assigments for benthic macroinvertebrates. In Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish, Second Edition. Washington, D.C.: Environmental Protection Agency; Office of Water;. https://doi.org/EPA 841-B-99-002.

  • Battaglia, M., Hose, G. C., Turak, E., & Warden, B. (2005). Depauperate macroinvertebrates in a mine affected stream: clean water may be the key to recovery. Environmental Pollution, 138(1), 132–141. https://doi.org/10.1016/j.envpol.2005.02.022.

    Article  CAS  Google Scholar 

  • Besser, J. M., & Leib, K. J. (2007). Toxicity of metals in water and sediment to aquatic biota. In P. von Guerard, S. E. Church, & S. E. Finger (Eds.), Integrated investigations of environmental effects of historical mining in the Animas River watershed, San Juan County, Colorado (p. 14). San Juan, Colorado: U.S. Geological Survey.

    Google Scholar 

  • Bhattacharya, A., Routh, J., Jacks, G., Bhattacharya, P., & Mörth, M. (2006). Environmental assessment of abandoned mine tailings in Adak, Västerbotten district (northern Sweden). Applied Geochemistry, 21(10), 1760–1780. https://doi.org/10.1016/j.apgeochem.2006.06.011.

    Article  CAS  Google Scholar 

  • Borgmann, U., Nowierski, M., Grapentine, L. C., & Dixon, D. G. (2004). Assessing the cause of impacts on benthic organisms near Rouyn-Noranda, Quebec. Environmental Pollution, 129(1), 39–48. https://doi.org/10.1016/j.envpol.2003.09.023.

    Article  CAS  Google Scholar 

  • Bott, T. L., Jackson, J. K., McTammany, M. E., Newbold, J. D., Rier, S. T., Sweeney, B. W., & Battle, J. M. (2012). Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function. Ecological Applications, 22(8), 2144–2163. https://doi.org/10.1890/11-1735.1.

    Article  Google Scholar 

  • Breneman, D., Richards, C., & Lozano, S. (2000). Environmental influences on benthic community structure in a Great Lakes embayment. Journal of Great Lakes Research, 26(3), 287–304. https://doi.org/10.1016/S0380-1330(00)70693-9.

    Article  CAS  Google Scholar 

  • Canfield, T. J., Kemble, N. E., Brumbaugh, W. G., Dwyer, F. J., Ingersoll, C. G., & Fairchild, J. F. (1994). Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana. Environmental Toxicology and Chemistry, 13(12), 1999–2012. https://doi.org/10.1002/etc.5620131213.

    Article  CAS  Google Scholar 

  • Chen, M., Lu, G., Guo, C., Yang, C., Wu, J., Huang, W., et al. (2015). Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chemosphere, 119(Supplement C), 734–743. https://doi.org/10.1016/j.chemosphere.2014.07.094.

    Article  CAS  Google Scholar 

  • Couillard, Y., & Goulet, R. R. (2004). L’état préoccupant du lac Dasserat. Retrieved from http://www.creat08.ca/pdf/lacDasserat-Nov2006.pdf.

  • Croteau, M.-N., Hare, L., & Tessier, A. (1998). Refining and testing a trace metal biomonitor (Chaoborus) in highly acidic lakes. Environmental Science & Technology, 32(9), 1348–1353. https://doi.org/10.1021/es970705+.

    Article  CAS  Google Scholar 

  • Croteau, M.-N., Hare, L., & Tessier, A. (2002). Increases in food web cadmium following reductions in atmospheric inputs to some lakes. Environmental Science & Technology, 36(14), 3079–3082 Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=13795238.

    Article  CAS  Google Scholar 

  • DeNicola, D. M., & Stapleton, M. G. (2002). Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects. Environmental Pollution, 119(3), 303–315. https://doi.org/10.1016/S0269-7491(02)00106-9.

    Article  CAS  Google Scholar 

  • DeNicola, D. M., & Stapleton, M. G. (2016). Using macroinvertebrates to assess ecological integrity of streams remediated for acid mine drainage. Restoration Ecology, 24(5), 656–667. https://doi.org/10.1111/rec.12366.

    Article  Google Scholar 

  • Devallois, V., Boyer, P., Boudenne, J.-L., Coulomb, B., Devallois, V., Boyer, P., et al. (2009). Mobility of trace metals in freshwater sediments by coupling solid-liquid exchanges, biogeochemical reactions and interstitial diffusion. Radioprotection, 44(5), 525–530. https://doi.org/10.1051/radiopro/20095097.

    Article  Google Scholar 

  • R Development Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 10 Aug 2017.

  • Dolédec, S., Chessel, D., ter Braak, C. J. F., & Champely, S. (1996). Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics, 3(2), 143–166. https://doi.org/10.1007/BF02427859.

    Article  Google Scholar 

  • Dray, S., Choler, P., Dolédec, S., Peres-Neto, P. R., Thuiller, W., Pavoine, S., & ter Braak, C. J. F. (2014). Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 95(1), 14–21. https://doi.org/10.1890/13-0196.1.

    Article  Google Scholar 

  • Dsa, J. V., Johnson, K. S., Lopez, D., Kanuckel, C., & Tumlinson, J. (2008). Residual toxicity of acid mine drainage-contaminated sediment to stream macroinvertebrates: relative contribution of acidity vs. metals. Water, Air, and Soil Pollution, 194(1), 185–197. https://doi.org/10.1007/s11270-008-9707-y.

    Article  CAS  Google Scholar 

  • García-García, G., Nandini, S., Sarma, S. S. S., Martínez-Jerónimo, F., & Jiménez-Contreras, J. (2012). Impact of chromium and aluminium pollution on the diversity of zooplankton: a case study in the Chimaliapan wetland (Ramsar site) (Lerma basin, Mexico). Journal of Environmental Science and Health, Part A, 47(4), 534–547. https://doi.org/10.1080/10934529.2012.650554.

    Article  Google Scholar 

  • Goulet, R. R., & Couillard, Y. (2009). Weight of evidence assessment of impacts from an abandoned mine site to the Lake Dasserat watershed, Quebec Canada. In F. R. Miranda & L. M. Bernard (Eds.), Lake pollution research progress (pp. 355–369). New York: Nova Science Publishers, Inc..

    Google Scholar 

  • Government of Canada. (2017). Past weather and climate—historical data. Retrieved November 14, 2017, from http://climat.meteo.gc.ca/historical_data/search_historic_data_e.html.

  • Hare, L. (1992). Aquatic insects and trace metals: bioavailability, bioaccumulation, and toxicity. Critical Reviews in Toxicology, 22(5–6), 327–369. https://doi.org/10.3109/10408449209146312.

    Article  CAS  Google Scholar 

  • Hare, L., Tessier, A., & Warren, L. (2001). Cadmium accumulation by invertebrates living at the sediment–water interface. Environmental Toxicology and Chemistry, 20(4), 880–889. https://doi.org/10.1002/etc.5620200424.

    CAS  Google Scholar 

  • Hare, L., Tessier, A., & Croteau, M.-N. (2008). A biomonitor for tracking changes in the availability of lakewater cadmium over space and time. Human and Ecological Risk Assessment: An International Journal, 14(2), 229–242. https://doi.org/10.1080/10807030801934838.

    Article  CAS  Google Scholar 

  • Havens, K. E. (1993). Pelagic food web structure in Adirondack Mountain, USA, lakes of varying acidity. Canadian Journal of Fisheries and Aquatic Sciences, 50(1), 149–155. https://doi.org/10.1139/f93-017.

    Article  Google Scholar 

  • He, F., Jiang, W., Tang, T., & Cai, Q. (2015). Assessing impact of acid mine drainage on benthic macroinvertebrates: can functional diversity metrics be used as indicators? Journal of Freshwater Ecology, 30(4), 513–524. https://doi.org/10.1080/02705060.2014.998730.

    Article  Google Scholar 

  • Hogsden, K. L., & Harding, J. S. (2012). Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science, 31(1), 108–120. https://doi.org/10.1899/11-091.1.

    Article  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1), 3–14. https://doi.org/10.1016/j.scitotenv.2004.09.002.

    Article  CAS  Google Scholar 

  • Johnson, A., White, J., & Huntamer, D. (1997). Effects of Holden Mine on the water, sediments, and benthic invertebrates at Railroad Creek (Lake Chelan). Olympia, Washington.

  • Kleyer, M., Dray, S., Bello, F., Lepš, J., Pakeman, R. J., Strauss, B., et al. (2012). Assessing species and community functional responses to environmental gradients: which multivariate methods? Journal of Vegetation Science, 23(5), 805–821. https://doi.org/10.1111/j.1654-1103.2012.01402.x.

    Article  Google Scholar 

  • Kövecses, J., Sherwood, G. D., & Rasmussen, J. B. (2005). Impacts of altered benthic invertebrate communities on the feeding ecology of yellow perch (Perca flavescens) in metal-contaminated lakes. Canadian Journal of Fisheries and Aquatic Sciences, 62(1), 153–162. https://doi.org/10.1139/f04-181.

    Article  Google Scholar 

  • SNC Lavalin. (2007). Plan de restauration du site minier Aldermac - Rapport final. Ministère des Ressources Naturelles et de la Faune - Secteur de l’Energie et des Mines.

  • Legendre, P., Galzin, R., & Harmelin-Vivien, M. L. (1997). Relating behavior to habitat: solutions to the fourth-corner problem. Ecology, 78(2), 547–562. https://doi.org/10.2307/2266029.

    Google Scholar 

  • Liess, M., Gerner, N. V., & Kefford, B. J. (2017). Metal toxicity affects predatory stream invertebrates less than other functional feeding groups. Environmental Pollution, 227, 505–512. https://doi.org/10.1016/j.envpol.2017.05.017.

    Article  CAS  Google Scholar 

  • MacCausland, A., & McTammany, M. E. (2007). The impact of episodic coal mine drainage pollution on benthic macroinvertebrates in streams in the Anthracite region of Pennsylvania. Environmental Pollution, 149(2), 216–226. https://doi.org/10.1016/j.envpol.2006.12.030.

    Article  CAS  Google Scholar 

  • Mackey, A. P. (1977). Growth and development of larval Chironomidae. Oikos, 28(2/3), 270–275.

    Article  Google Scholar 

  • Malmqvist, B., & Hoffsten, P.-O. (1999). Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams. Water Research, 33(10), 2415–2423. https://doi.org/10.1016/S0043-1354(98)00462-X.

    Article  CAS  Google Scholar 

  • Mandaville, S. M. (2002). Benthic macroinvertebrates in freshwaters—taxa tolerance values, metrics, and protocols. Halifax: Soil & Water Conservation Society of Metro Halifax.

    Google Scholar 

  • Martin, S., Proulx, I., & Hare, L. (2008). Explaining metal concentrations in sympatric Chironomus species. Limnology and Oceanography, 53(2), 411–419. https://doi.org/10.4319/lo.2008.53.2.0411.

    Article  CAS  Google Scholar 

  • Massmann, G., Tichomirowa, M., Merz, C., & Pekdeger, A. (2003). Sulfide oxidation and sulfate reduction in a shallow groundwater system (Oderbruch Aquifer, Germany). Journal of Hydrology, 278(1), 231–243. https://doi.org/10.1016/S0022-1694(03)00153-7.

    Article  CAS  Google Scholar 

  • Merritt, R. W., Cummins, K. W., & Berg, M. B. (2008). An introduction to aquatic insects of North America (4th ed.). Dubuque, IA: Kendall/Hunt Publishing Company.

    Google Scholar 

  • Nelson, S. M., & Roline, R. (1996). Recovery of a stream macroinvertebrate community from mine drainage disturbance. Hydrobiologia, 339(1–3), 73–84. https://doi.org/10.1007/BF00008915.

    Article  Google Scholar 

  • Pennak, R. W. (1978). Freshwater invertebrates of the United States (Second ed.). John Wiley & Sons.

  • Perceval, O., Couillard, Y., Pinel-Alloul, B., & Campbell, P. G. C. (2006). Linking changes in subcellular cadmium distribution to growth and mortality rates in transplanted freshwater bivalves (Pyganodon grandis). Aquatic Toxicology, 79(1), 87–98. https://doi.org/10.1016/j.aquatox.2006.05.008.

    Article  CAS  Google Scholar 

  • Pérez-Esteban, J., Escolástico, C., Masaguer, A., Vargas, C., & Moliner, A. (2014). Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils. Chemosphere, 103 (supplement C), 164–171. doi:https://doi.org/10.1016/j.chemosphere.2013.11.055.

  • Ponton, D. E., & Hare, L. (2009). Assessment of nickel contamination in lakes using the phantom midge Chaoborus as a biomonitor. Environmental Science & Technology, 43(17), 6529–6534. https://doi.org/10.1021/es900920b.

    Article  CAS  Google Scholar 

  • Ponton, D. E., & Hare, L. (2013). Relating selenium concentrations in a planktivore to selenium speciation in lakewater. Environmental Pollution, 176(0), 254–260. https://doi.org/10.1016/j.envpol.2013.01.032.

    Article  CAS  Google Scholar 

  • Proulx, I., & Hare, L. (2014). Differences in feeding behaviour among Chironomus species revealed by measurements of sulphur stable isotopes and cadmium in larvae. Freshwater Biology, 59(1), 73–86. https://doi.org/10.1111/fwb.12247.

    Article  CAS  Google Scholar 

  • Proulx, I., Martin, J., Carew, M., & Hare, L. (2013). Using various lines of evidence to identify Chironomus species (Diptera: Chironomidae) in eastern Canadian lakes. Zootaxa, 3741(4), 401–458. https://doi.org/10.11646/zootaxa.3741.4.1.

    Article  Google Scholar 

  • Ristola, T., Pellinen, J., Ruokolainen, M., Kostamo, A., & Kukkonen, J. V. K. (1999). Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomus riparius). Environmental Toxicology and Chemistry, 18(4), 756–764. https://doi.org/10.1002/etc.5620180423.

    Article  CAS  Google Scholar 

  • Rosabal, M., Hare, L., & Campbell, P. G. C. (2012). Subcellular metal partitioning in larvae of the insect Chaoborus collected along an environmental metal exposure gradient (Cd, Cu, Ni and Zn). Aquatic Toxicology, 120-121(0), 67–78. https://doi.org/10.1016/j.aquatox.2012.05.001.

    Article  CAS  Google Scholar 

  • Schaider, L. A., Senn, D. B., Estes, E. R., Brabander, D. J., & Shine, J. P. (2014). Sources and fates of heavy metals in a mining-impacted stream: temporal variability and the role of iron oxides. Science of the Total Environment, 490, 456–466. https://doi.org/10.1016/j.scitotenv.2014.04.126.

    Article  CAS  Google Scholar 

  • Simmons, J. A., Lawrence, E. R., & Jones, T. G. (2005). Treated and untreated acid mine drainage effects on stream periphyton biomass, leaf decomposition, and macroinvertebrate diversity. Journal of Freshwater Ecology, 20(3), 413–424. https://doi.org/10.1080/02705060.2005.9664756.

    Article  Google Scholar 

  • Tachet, H., Richoux, P., Bournaud, M., & Usseglio-Polatera, F. (2000). Invertébrés d’eau douce: systématique, biologie, écologie. Paris: CNRS Éditions.

    Google Scholar 

  • Vanbroekhoven, K., Van Roy, S., Diels, L., Gemoets, J., Verkaeren, P., Zeuwts, L., et al. (2008). Sustainable approach for the immobilization of metals in the saturated zone: in situ bioprecipitation. Hydrometallurgy, 94(1), 110–115. https://doi.org/10.1016/j.hydromet.2008.05.048.

    Article  CAS  Google Scholar 

  • Vuori, K. M. (1995). Direct and indirect effects of iron on river ecosystems. Annales Zoologici Fennici, 32, 317–329.

    Google Scholar 

  • Wiederholm T. (Ed.) (1983). Chironomidae of the Holarctic Region. Keys and diagnoses. Part 1—larvae (Vol. 19). Museum of Zoology and Entomology Lund University: Entomologica scandinavica Supplement 19.

  • Wu, D., & Legg, D. (2011). Responses of benthic insect communities to effluent from the abandoned Ferris-Haggarty copper mine in southeast Wyoming, USA. Journal of Environmental Sciences, 23(11), 1894–1903. https://doi.org/10.1016/S1001-0742(10)60612-2.

    Article  Google Scholar 

  • Yan, N. D., Mackie, G. L., & Dillon, P. J. (1990). Cadmium concentrations of crustacean zooplankton of acidified and nonacidified Canadian Shield lakes. Environmental Science & Technology, 24(9), 1367–1372. https://doi.org/10.1021/es00079a010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Proulx, D. Ponton, and M. Rosabal for collecting samples in the field and for analyzing water samples, as well as S. Roberge for assistance with GIS. We also thank A. Saint-Hilaire and P. Couture for their valuable comments on this work, and J. Morse for the determination of Trichoptera. This research was supported by the National Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

J. Mocq and L. Hare were both involved in the identification of the individuals, the statistical treatment of the data, and the writing of the manuscript.

Corresponding author

Correspondence to Julien Mocq.

Electronic supplementary material

Online Resource 1

(XLSX 14 kb).

Online Resource 2

(DOCX 18 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mocq, J., Hare, L. Influence of Acid Mine Drainage, and Its Remediation, on Lakewater Quality and Benthic Invertebrate Communities. Water Air Soil Pollut 229, 28 (2018). https://doi.org/10.1007/s11270-017-3671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3671-3

Keywords

Navigation