Advertisement

Water Quality in a Reservoir used for Fish Farming in Cages in Winter and Summer Periods

  • Antonio Cesar Godoy
  • Arlindo Fabrício Corrêia
  • Wilson Rogério Boscolo
  • Fábio Bittencourt
  • Altevir Signor
  • José D. de Oliveira
  • Aldi Feiden
Article

Abstract

This study aimed to evaluate the vertical dynamics of the water quality, in different seasons (summer and winter), in an aquaculture area of the Iguassu River electric plant reservoir (Paraná/Brasil). Water sampling was done monthly. Samples were collected from the water column layers (epilimnion, metalimnion and hypolimnion.). Water temperature, (pH), dissolved oxygen, biochemical oxygen demand, nitrite, chlorophyll, total phosphorus, orthophosphate and ammonia were the parameters evaluated. Data from each parameter were submitted to ANOVA and to Tukey’s test at the 0.05 significance level. Correlation analysis between the variables was performed using the Spearman’s test. Multivariate approach was adopted performing Royston’s multivariate normality test. A clustering analysis was performed using Ward’s minimum variance method with a Euclidean distance matrix. This study showed that fish farming did not alter the water quality during summer and winter. Heterogeneity in summer and homogeneity in winter are observed between the layers of the water column.

Keywords

Fish farming Chemical analysis Environment Impact studies Water body 

Notes

Funding Information

We would like to thank CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. APHA. (2005). Standard methods for the examination of water and wastewater. Washington: American Public Health Association (APHA).Google Scholar
  2. Ayroza, D.M.M.R., Nogueira, M.G., da Silva Ayroza, L.M., Carvalho, E.D., Ferraudo, A.S., & Camargo, A.F.M. (2013). Temporal and spatial variability of limnological characteristics in areas under the influence of tilapia cages in the chavantes reservoir, paranapanema river, brazil. Journal of the World Aquaculture Society, 44(6), 814–825.CrossRefGoogle Scholar
  3. Barbosa, F.A., & Padisák, J. (2003). The forgotten lake stratification pattern: atelomixis, and its ecological importance. Proceedings-International Association of Theoretical and Applied Limnology, 28, 1385–1395.Google Scholar
  4. Bi, W., Li, Y., & Hu, Y. (2014). Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate. Bioresource technology, 166, 1–8.CrossRefGoogle Scholar
  5. Boyd, C.E., Tucker, C., McNevin, A., Bostick, K., & Clay, J. (2007). Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Reviews in Fisheries science, 15(4), 327–360.CrossRefGoogle Scholar
  6. Brasil Ministério do Desenvolvimento Humano e Meio Ambiente. (2005). Resolução CONAMA. Nº 357/2005. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf.
  7. Bueno, G., Marengoni, N., Gonçalves Júnior, A.C., Boscolo, W., & Teixeira, R.d.A. (2008). Estado trófico e bioacumulação do fósforo total no cultivo de peixes em tanques-rede na área aquícola do reservatório de itaipu. Acta Scientiarum Biological Sciences, 30(30), 237–243.Google Scholar
  8. Carlson, R.E. (1977). A trophic state index for lakes. Limnology and oceanography, 22(2), 361–369.CrossRefGoogle Scholar
  9. Diemer, O., Neu, D.H., Feiden, A., Lorenz, E.K., Bittencourt, F., & Boscolo, W.R. (2010). Dinâmica nictimeral e vertical das características limnológicas em ambiente de criação de peixes em tanques-rede. Ciê,ncia Animal Brasileira, 11(1), 24–31.Google Scholar
  10. Feiden, I.F., JDSd, Oliveira, Diemer, O., & Feiden, A. (2015). Water quality, capacity of holder and best time to fish farming in cages in the reservoir salto caxias. Engenharia Sanitaria e Ambiental, 20 (4), 589–594.CrossRefGoogle Scholar
  11. Ferreira, D.M., & Cunha, C. (2013). Numerical simulation of the temperature dynamics at rio verde reservoir. Engenharia Sanitaria e Ambiental, 18(1), 83–93.CrossRefGoogle Scholar
  12. Garcia, C., Garcia, D., & Leite, M. (2007). Comparação entre dois índices de estado trófico para o reservatório de ilha solteira. In CONGRESSO DE ECOLOGIA DO BRASIL, (Vol. 8 pp. 1-2).Google Scholar
  13. IAP. (2017). Qualidade das águas dos reservatórios do Estado do paraná IAP. Boletim Tecnico, Instituto Ambiental do Paraná.Google Scholar
  14. Korkmaz, S., & Goksuluk, D. (2014). Mvn package: multivariate normality tests. dim (iris), 1(150), 5.Google Scholar
  15. Leonardo, A.F., Correa, C.F., & Baccarin, A. (2011). Qualidade da água de um reservatório submetido a criação de tilápias em tanques-rede, no sul de são paulo, brasil. Boletim do Instituto de Pesca, 37(4), 341–354.Google Scholar
  16. Mendiburu, F.d. (2013). Statistical Procedures for Agricultural Research. http://cran.r-project.org/package=agricolae.
  17. Merten, G.H., & Minella, J.P. (2002). Qualidade da água em bacias hidrográficas rurais: um desafio atual para a sobrevivência futura. Agroecologia e Desenvolvimento Rural Sustentá,vel, 3(4), 33–38.Google Scholar
  18. Neu, D.H., Boscolo, W.R., Diemer, O., de Camargo, D.J., Wächter, N., & Feiden, A. (2013). Qualidade da água em um reservatório neotropical associado à criaċão de peixes em tanques rede: Reservatório de itaipu. Agrarian, 7(23), 139–146.Google Scholar
  19. Parry, R. (1998). Agricultural phosphorus and water quality: a us environmental protection agency perspective. Journal of Environmental Quality, 27(2), 258–261.CrossRefGoogle Scholar
  20. Phan-Van, M., Rousseau, D., & De Pauw, N. (2008). Effects of fish bioturbation on the vertical distribution of water temperature and dissolved oxygen in a fish culture-integrated waste stabilization pond system in vietnam. Aquaculture, 281(1), 28–33.CrossRefGoogle Scholar
  21. Potrich, F.R., Signor, A.A., Dieterich, T.G., Neu, D., Feiden, A., & Boscolo, W. (2011). Estabilidade e lixiviação de nutrientes com rações de diferentes níveis protéicos. Revista Cultivando o Saber, 4, 77–87.Google Scholar
  22. R Development Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  23. Ramirez, J., & Bicudo, C.d.M. (2005). Diurnal and spatial (vertical) dynamics of nutrients (n, p, si) in four sampling days (summer, fall, winter, and spring) in a tropical shallow reservoir and their relationships with the phytoplankton community. Brazilian Journal of Biology, 65(1), 141–157.CrossRefGoogle Scholar
  24. Ribeiro Filho, R., Petrere Junior, M., Benassi, S., & Pereira, J. (2011). Itaipu reservoir limnology: eutrophication degree and the horizontal distribution of its limnological variables. Brazilian Journal of Biology, 71(4), 889–902.CrossRefGoogle Scholar
  25. Santos, G., Schrama, J., Mamauag, R., Rombout, J., & Verreth, J. (2010). Chronic stress impairs performance, energy metabolism and welfare indicators in european seabass (dicentrarchus labrax): the combined effects of fish crowding and water quality deterioration. Aquaculture, 299(1), 73–80.CrossRefGoogle Scholar
  26. Schork, G., & Zaniboni-Filho, E. (2017). Structure dynamics of a fish community over ten years of formation in the reservoir of the hydroelectric power plant in upper Uruguay river. Brazilian Journal of Biology (AHEAD): 0–0.Google Scholar
  27. Sharpley, A., & Rekolainen, S. (1997). Phosphorus in agriculture and its environmental implications. Phosphorus loss from soil to water.Google Scholar
  28. Talling, J. (1966). The annual cycle of stratification and phytoplankton growth in lake victoria (east africa). International Review of Hydrobiology, 51(4), 545–621.CrossRefGoogle Scholar
  29. Tavares, L. (1995). Limnologia aplicada a aquicultura UNESP. Boletim Tecnico, FUNEP.Google Scholar
  30. Toledo, A.P.Jr, Talarico, M., Chimez, S.J., & Agudo, E.G. (1983). A aplicação de modelos simplificados para a avaliação e processo de eutrofização em lagos e reservatórios. In Anais do 12Congresso Brasileiro de Engenharia Sanitária (pp. 1–34).Google Scholar
  31. Wetzel, R., & de Lemos Boavida, M. (1993). Limnologia. Manuais universitários, Fundação Calouste Gulbenkian. Serviço de Educação.Google Scholar
  32. Zimmermann, S., Moreira, H., Vargas, L., & Ribeiro, R. (2001). Fundamentos da moderna aquicultura. Canoas: Ed ULBRA.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Ciênicas Exatas - Departamento de QuímicaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Pontifícia Universidade CatólicaToledoBrazil
  3. 3.Universidade Estadual do Oeste do Paraná. Rua da FaculdadeToledoBrazil

Personalised recommendations