Skip to main content
Log in

Production of Oxalic Acid from Aspergillus niger and Whey Permeate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

When manure is applied to crops on a nitrogen basis, it often creates a buildup of phosphorus (P) in the soil. Phosphorus recovery as struvite is one strategy to capture excess P prior to land application. Dairy cow manure requires an acid pH to break the calcium phosphate bonds present in the manure, and oxalic acid is desirable because, in addition to breaking bonds, its anion binds calcium. The fungus Aspergillus niger is known to produce primarily oxalic acid when utilizing a lactose substrate. Whey permeate is a byproduct of cheese-making and a potential inexpensive source of lactose. An experiment was designed to measure oxalic acid production by Aspergillus niger using two strains of Aspergillus niger (ATCC 6275 and ATCC 9029), whey permeate with varying lactose concentrations of 11 and 20%, and fermentation temperatures of 30 °C and room temperature. All fermentations produced oxalic acid; however, concentrations were below 10 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnott, H. J. (1995). Calcium oxalate in fungi. In S. R. Khan (Ed.), Calcium oxalate in biological systems (pp. 73–111). Boca Raton: CRC Press.

    Google Scholar 

  • Arvaniti, E. C., Lioliou, M. G., Paraskeva, C. A., Payatakes, A. C., Østvold, T., Koutsoukos, P. G., et al. (2010). Calcium oxalate crystallization on concrete heterogeneities. Chemical Engineering Research and Design, 88, 1455–1460.

    Article  CAS  Google Scholar 

  • Belen, M., Salgado, J. M., Rodriguez, N., Cortes, S., Converti, A., Dominguez, J. M., et al. (2010). Biotechnological production of citric acid. Brazilian Journal of Microbiology, 41, 862–875.

    Article  Google Scholar 

  • Bohlmann, J. T., Cameselle, C., Nunez, M. J., Lema, J. M., et al. (1998). Oxalic acid production by Aspergillus niger part II: optimization of fermentation with milk whey as carbon source. Bioprocess Engineering, 19, 337–342.

    CAS  Google Scholar 

  • Bomstein, R. A., & Johnson, M. J. (1952). The mechanism of formation of citrate and oxalate by Aspergillus niger. The Journal of Biological Chemistry, 198, 143–153.

    CAS  Google Scholar 

  • Bouropoulos, N. C., & Koutsoukos, P. G. (2000). Spontaneous precipitation of struvite from aqueous solutions. Journal of Crystal Growth, 213, 381–388.

    Article  CAS  Google Scholar 

  • Bowers, K. E., & Westerman, P. W. (2005). Performance of cone-shaped fluidized bed struvite crystallizers in removing phosphorus from wastewater. Transactions of the ASAE, 48(3), 1227–1234.

    Article  CAS  Google Scholar 

  • Cameselle, C., Bohlmann, J. T., Nunez, M. J., Lema, J. M., et al. (1998). Oxalic acid production by Aspergillus niger part I: influence of sucrose and milk whey as carbon source. Bioprocess Engineering, 19, 247–252.

    CAS  Google Scholar 

  • Casey, E., Mosier, N. S., Adamec, J., Stockdale, Z., Ho, N., Sedlak, M., et al. (2013). Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnology for Biofuels, 6, 83.

    Article  CAS  Google Scholar 

  • Cleland, W. W., & Johnson, M. J. (1956). Studies on the formation of oxalic acid by Aspergillus niger. The Journal of Biological Chemistry, 220, 595–606.

    CAS  Google Scholar 

  • Demirer, G., & Yilmazel, D. (2013). Nitrogen and phosphorus recovery from anaerobic co-digestion residues of poultry manure and maize silage via struvite precipitation. Waste Management & Research, 31, 792–804.

    Article  Google Scholar 

  • Dutton, M. V., & Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–895.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41, 47–92.

    Article  CAS  Google Scholar 

  • Gadd, G. M., Bahri-Esfahani, J., Li, Q., Rhee, Y. J., Wei, Z., Fomina, M., Liang, X., et al. (2014). Oxalate production by fungi: significance in geomycology, biodeterioration, and bioremediation. Fungal Biology Reviews, 28, 36–55.

    Article  Google Scholar 

  • Goff, H. D. (2017). The dairy science and technology eBook: dairy processing. Dairy science and technology education series, University of Guelph, Canada.

  • Graustein, W. C., Cromack Jr., K., Sollins, P., et al. (1977). Calcium oxalate: occurrence in soils and effects on nutrient and geochemical cycles. Science, 198, 1252–1254.

    Article  CAS  Google Scholar 

  • Harris, W. G., Wilkie, A. C., Cao, X., Sirengo, R., et al. (2008). Bench-scale recovery of phosphorus from flushed dairy manure wastewater. Bioresource Technology, 99, 3036–3043.

    Article  CAS  Google Scholar 

  • Hattori, T., Takahashi, S., Kino, K., Kirimura, K., et al. (2007). Production of oxalic acid by overexpression of oxaloacetate hydrolase gene (oahA) in Aspergillus niger WU-2223L. Journal of Biotechnology, 131S, S175.

    Article  Google Scholar 

  • Huchzermeier, M. P., & Tao, W. (2012). Overcoming challenges to struvite recovery from anaerobically digested dairy manure. Water Environment Research, 84(1), 34–41.

    Article  CAS  Google Scholar 

  • Kobayashi, K., Hattori, T., Honda, Y., Kirimura, K., et al. (2014). Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA. Journal of Industrial Microbiology & Biotechnology, 41, 749–756.

    Article  CAS  Google Scholar 

  • Kubicek, C. P., Kunar, G. S., Wohrer, W., Rohr, M., et al. (1988). Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger. Applied and Environmental Microbiology, 54, 633–637.

    CAS  Google Scholar 

  • Lenz, H., Wunderwald, P., Eggerer, H., et al. (1976). Partial purification and some properties of oxalacetase from Aspergillus niger. European Journal of Biochemistry, 65, 225–236.

    Article  CAS  Google Scholar 

  • Li, Z., Bai, T., Dai, L., Wang, F., Tao, J., Meng, S., Hu, Y., Wang, S., Hu, S., et al. (2016). A study of organic acid production in contrast between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Scientific Reports. https://doi.org/10.1038/srep25313.

  • Makela, M. R., Hilden, K., Lundell, T., et al. (2010). Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi. Applied Microbiology and Biotechnology, 87, 801–814.

    Article  Google Scholar 

  • Mandal, S. K., & Banerjee, P. C. (2005). Submerged production of oxalic acid from glucose by immobilized Aspergillus niger. Process Biochemistry, 40, 1605–1610.

    Article  CAS  Google Scholar 

  • Mandal, S. K., & Banerjee, P. C. (2006). Oxalic acid production by Aspergillus niger: influence of hydrogen ion concentration and nitrogen source. Research Journal of Microbiology, 1(2), 190–197.

    Article  CAS  Google Scholar 

  • Nakata, P. A. (2003). Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science, 164, 901–909.

    Article  CAS  Google Scholar 

  • AOAC (2012). Official methods of analysis. 19th ed. Officical Method 941.04, 985.01. Gaithersburg: AOAC International.

  • Papagianni, M., Mattey, M., Berovic, M., Kristiansen, B., et al. (1999). Aspergillus niger morphology and citric acid production in submerged batch fermentation: effects of culture pH, phosphate and manganese levels. Food Technology and Biotechnology, 37, 165–171.

    CAS  Google Scholar 

  • Qureshi, A., Lo, K. V., Liao, P. H., et al. (2008). Microwave treatment and struvite recovery potential of dairy manure. Journal of Environmental Science and Health. Part. B, 43, 350–357.

    Article  CAS  Google Scholar 

  • Ruijter, G. J. G., van de Vondervoort, P. J. I., Visser, J., et al. (1999). Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology, 145, 2569–2576.

    Article  CAS  Google Scholar 

  • Ryther, J. H., & Dunstan, W. M. (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171(3975), 1008–1013.

    Article  CAS  Google Scholar 

  • Santhiya, D., & Ting, Y. (2004). Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Journal of Biotechnology, 116, 171–184.

    Article  Google Scholar 

  • Santoro, R., Cameselle, C., Rodriguez-Couto, S., Sanroman, A., et al. (1999). Influence of milk whey, nitrogen and phosphorus concentration on oxalic acid production by Aspergillus niger. Bioprocess Engineering, 20, 1–5.

    CAS  Google Scholar 

  • Strasser, H., Burgstaller, W., Schinner, F., et al. (1994). High-yield production of oxalic acid for metal leaching processes by Aspergillus niger. FEMS Microbiology Letters, 119, 365–370.

    Article  CAS  Google Scholar 

  • Svedruzic, D., Jonsson, S., Toyota, C., Reinhardt, L., Ricagno, S., Lindqvist, Y., Richards, N. G. J., et al. (2005). The enzymes of oxalate metabolism: unexpected structures and mechanisms. Archives of Biochemistry and Biophysics, 433, 176–192.

    Article  CAS  Google Scholar 

  • Tomoyeda, M., Inari, T., Koshino, Y., et al. (1988). Mechanism of oxalic-acid fermentation of Aspergillus-niger. Nihon Nogei Kagakkai shi, 62(6), 965–970.

    CAS  Google Scholar 

  • Watanabe, T., Hattori, T., Tengku, S., Shimada, M., et al. (2005). Purification and characterization of NAD-dependent formate dehydrogenase from the white-rot fungus Ceriporiopsis subvermispora and a possible role of the enzyme in oxalate metabolism. Enzyme and Microbial Technology, 37, 68–75.

    Article  CAS  Google Scholar 

  • Watanabe, T., Fujiwara, T., Umezawa, T., Shimada, M., Hattori, T., et al. (2008). Cloning of a cDNA encoding a NAD-dependent formate dehydrogenase involved in oxalic acid metabolism from the white-rot fungus Ceriporiopsis subvermispora and its gene expression analysis. FEMS Microbiology Letters, 279, 64–70.

    Article  CAS  Google Scholar 

  • Weiss, W. P. (2004). Estimating manure phosphorus excretion by dairy cows. Journal of Dairy Science, 87, 2158.

    Article  CAS  Google Scholar 

  • Wucherpfennig, T., Hestler, T., Krull, R., et al. (2011). Morphology engineering—osmolality and its effect on Aspergillus niger morphology and productivity. Microbial Cell Factories, 10, 58.

    Article  Google Scholar 

  • Zhang, T., Bowers, K. E., Harrison, J. H., Chen, S., et al. (2010). Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent. Water Environment Research, 82(1), 34–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was partially funded by the Washington State Dairy Products Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Harrison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K., Harrison, J. & Bowers, K. Production of Oxalic Acid from Aspergillus niger and Whey Permeate. Water Air Soil Pollut 229, 5 (2018). https://doi.org/10.1007/s11270-017-3662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3662-4

Keywords

Navigation