Effect of Stover Management and Nitrogen Fertilization on N2O and CO2 Emissions from Irrigated Maize in a High Nitrate Mediterranean Soil

  • S. C. MarisEmail author
  • J. Lloveras
  • A. Vallejo
  • M. R. Teira-Esmatges


A high soil nitrogen (N) content in irrigated areas quite often results in environmental problems. Improving the management practices of intensive agriculture can mitigate greenhouse gas (GHG) emissions. This study compared the effect of maize stover incorporation or removal together with different mineral N fertilizer rates (0, 200 and 300 kg N ha−1) on the emission of nitrous oxide (N2O) and carbon dioxide (CO2) on a sprinkler-irrigated maize (Zea mays L.). The trail was conducted in the Ebro Valley (NE Spain) in a high nitrate-N soil (i.e. 200 g NO3–N kg−1). Nitrous oxide and CO2 emissions were sampled weekly using a semi-static closed chamber and quantified using the photoacoustic technique in 2011 and 2012. Applying sidedress N fertilizer tended to increase N2O emissions whereas stover incorporation did not have any clear effect. Nitrification was probably the main process leading to N2O. Denitrification was limited by the low soil moisture content (WFPS < 54%), due to an adequate irrigation management. Emissions ranged from − 0.11 to 0.36% of the N applied, below the IPCC (2007) values. Nitrogen fertilization tended to reduce CO2 emission, but only in 2011. Stover incorporation increased CO2 emission. Nitrogen use efficiency decreased with increasing mineral fertilizer supply. The application of N in high N soils of the Ebro Valley is not necessary until the soil restores a normal mineral N content, regardless of stover management. This will combine productivity with keeping N2O and CO2 emissions under control provided irrigation is adequately managed. Testing soil NO3 –N contents before fertilizing would improve N fertilizer recommendations.


Greenhouse gases Nitrification WFPS Mediterranean 



This study was part of project “AGL2009-12897/C00-01”, financed by the Spanish Ministry of Science and Innovation. We would like to thank Dan Dhanoa for his advice on the statistical methods and data analysis and Dr. L. Cardenas for her useful comments (Rothamsted Research-North Wyke, Okehampton, UK). We also thank Cosme Marsol for his cooperation. Stefania C. Maris is grateful for the grant provided by Lleida University for her PhD studies. This research article has received a grant for its linguistic revision from the Language Institute of the University of Lleida (2016 call). The authors also gratefully acknowledge the field and laboratory support of Fernando Grigelmo Miguel.


  1. Abalos, D., Sanchez-Martin, L., Garcia-Torres, L., van Groenigen, J. W., & Vallejo, A. (2014). Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Science of the Total Environment, 490, 880–888. Scholar
  2. Abalos, D. A., Sanz-Cobena, L., Garcia-Torres, L., van Groenigen, J. W., & Vallejo, A. (2012). Role of maize stover incorporation on nitrogen oxide emissions in a non-irrigated Mediterranean barley field. Plant and Soil, 364(1–2), 357–371.Google Scholar
  3. Ågren, G. I., Bosatta, E., & Magill, A. H. (2001). Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologies, 128, 94–98. Scholar
  4. Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J., & Vallejo, A. (2013). The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agriculture, Ecosystems and Environment, 164, 32–52. Scholar
  5. Al-Kaisi, M. M., Kruse, M. L., & Sawyer, J. E. (2008). Effect of nitrogen fertilizer application on growing season soil carbon dioxide emission in a corn-soybean rotation. Journal of Environmental Quality, 37, 325–332. Scholar
  6. Allen, R. G., Raes, L. S., & Smith, D. M. (1998). Crop evapotranspiration, guidelines for computing crop water requirements, irrigation and drainage, paper 56. Rome: FAO.Google Scholar
  7. Allmaras, R. R., Schomberg, H. H., Douglas Jr., C. L., & Dao, T. H. (2004). Soil organic carbon sequestration potential of adopting conservation tillage in US croplands. Journal of Soil and Water Conservation, 55, 365–373.Google Scholar
  8. Almaraz, J. J., Zhou, X., Mabood, F., Madramootoo, C., Rochette, P., Ma, B.-L., & Smith, D. L. (2009). Greenhouse gas fluxes associated with soybean production under two tillage systems in southwestern Quebec. Soil and Tillage Research, 104(1), 134–139.CrossRefGoogle Scholar
  9. Álvaro-Fuentes, J., Arrúea, J. L., Cantero-Martínez, C., Isla, R., Plaza-Bonilla, D., & Quíleze, D. (2016). Fertilization scenarios in sprinkler-irrigated corn under Mediterranean conditions: Effects on greenhouse gas emissions. Soil Science Society of America Journal, 80, 662–671. Scholar
  10. Anderson, T. H. (1994). Physical analysis of microbial communities in soil: Applications and limitations. In K. Ritz, J. Dighton, & K. E. Giller (Eds.), Beyond the biomass: Compositional and functional analysis of soil microbial communities (pp. 67–76). New York: John Wiley and Sons.Google Scholar
  11. Baggs, E. M., Rees, R. M., Smith, K. A., & Vinten, A. J. A. (2000). Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management, 16, 82–87.CrossRefGoogle Scholar
  12. Baggs, E. M., Stevenson, M. M., Pihlatie, A., Regar, H., Cook, G., & Cadisch, C. (2003). Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage. Plant and Soil, 254, 361–370.CrossRefGoogle Scholar
  13. Bateman, E. J., & Baggs, E. M. (2005). Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils, 41, 379–388.CrossRefGoogle Scholar
  14. Berenguer, P., Cela, S., Santiveri, F., Boixadera, J., & Lloveras, J. (2009). Nitrogen fertilisation of irrigated maize under Mediterranean conditions. European Journal of Agronomy, 30, 163–171.CrossRefGoogle Scholar
  15. Berg, B. (1986). Nutrient release from litter and humus in coniferous forest soils—A mini review. Scandinavian Journal of Forest Research, 1, 359–369.CrossRefGoogle Scholar
  16. Berg, B., DeSanto, A. V., Mc Claugherty, C., & Johnson, D. (2001). Humus buildup in boreal forests: Effects of litter fall and its N concentration. Canadian Journal of Forest Research, 31, 988–998.CrossRefGoogle Scholar
  17. Berg, B., & Tamm, C. O. (1991). Decomposition and nutrient dynamics of litter in long-term optimum nutrient experiments. Scandinavian Journal of Forest Research, 6, 305–321.CrossRefGoogle Scholar
  18. Biau, A., Santiveri, F., & Lloveras, J. (2013). Stover management and nitrogen fertilization effects on corn production. Agronomy Journal, 105(5), 1264–1270.CrossRefGoogle Scholar
  19. Bock, B. R. (1984). Efficient use of nitrogen in cropping systems. In R. D. Hauck (Ed.), Nitrogen in crop production (pp. 273–294). Madison, Wisconsin: Agron. Soc. of Am.Google Scholar
  20. Bosch, À., Porta, P., & Torres, J. (2009). Treballar el sòl. Un art per descobrir (pp. 188–202). Lleida: Universitat de Lleida.Google Scholar
  21. Bremner, J. M. (1997). Sources of nitrous oxide in soils. Nutrient Cycling in Agro ecosystems, 49, 7–16.CrossRefGoogle Scholar
  22. Burton, A. J., Pregitzer, K. S., Crawford, J. N., Zogg, G. P., & Zak, D. R. (2004). Simulated chronic NO3 deposition reduces soil respiration in northern hardwood forests. Global Change Biology, 10(7), 1080–1091. Scholar
  23. Cardenas, L. M., Thorman, R., Ashlee, N., Butler, M., Chadwick, D., Chambers, B., Cuttle, S., Donovan, N., Kingston, H., & Lane, S. (2010). Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs. Agriculture, Ecosystems and Environment, 136(3–4), 218–226.CrossRefGoogle Scholar
  24. Cayuela, M. L., Aguilera, E., Sanz-Cobena, A., Adams, D. C., Abalos, D., Barton, L., Ryals, R., Silver, W. L., Alfaro, M. A., Pappa, V. A., Smith, P., Garnier, J., Billen, G., Bouwman, L., Bondeau, A., & Lassaletta, L. (2017). Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 238, 25–35.CrossRefGoogle Scholar
  25. Chan, A. S. K., & Parkin, T. B. (2001). Effect of land use on methane flux from soil. Journal of Environmental Quality, 30, 786–797.CrossRefGoogle Scholar
  26. Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J. L., & Bernoux, M. (2007). Soils, a sink for N2O? A review. Global Change Biology, 13, 1–17. Scholar
  27. Clayton, H., McTaggart, I. P., Parker, J., Swan, L., & Smith, K. A. (1997). Nitrous oxide emissions from fertilised grassland: A 2-year study of the effects of N fertilizer form and environmental conditions. Biology and Fertility of Soils, 25(3), 252–260.CrossRefGoogle Scholar
  28. Davidson, E. A. (1991). Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In J. E. Rogers & W. B. Whitman (Eds.), Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and Halomethanes (pp. 219–235). Washington, DC: American Society of Microbiology.Google Scholar
  29. DeForest, J. L., Zak, D. R., Pregitzer, K. S., & Burton, A. J. (2004). Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America Journal, 68, 132–138.CrossRefGoogle Scholar
  30. Dendooven, L., Patino-Zuniga, L., Verhulst, N., Luna-Guido, M., Marsch, R., & Govaerts, B. (2012). Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agriculture, Ecosystems and Environment, 152, 50–58.CrossRefGoogle Scholar
  31. Di Paolo, E., & Rinaldi, M. (2008). Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Res., 105, 202–210.CrossRefGoogle Scholar
  32. Fisk, M. C., & Fahey, T. J. (2001). Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry, 53, 201–223.CrossRefGoogle Scholar
  33. Fogg, K. (1988). The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews, 63, 433–462. Scholar
  34. Fox, R. H., & Piekielek, W. P. (1993). Management and urease inhibitor effects on nitrogen use efficiency in no-till corn. Journal of Production Agriculture, 6, 195–200.CrossRefGoogle Scholar
  35. Guardia, G., Abalos, D., García-Marco, S., Quemada, M., Alonso-Ayuso, M., Cárdenas, L. M., Dixon, E. R., & Vallejo, A. (2016). Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences, 13, 5245–5257. Scholar
  36. Guzman, J., Al-Kaisi, M., & Parkin, T. (2015). Greenhouse gas emissions dynamics as influenced by corn residue removal in continuous corn system. Soil Science Society of America Journal, 79, 612–625. Scholar
  37. Harrison, R., Ellis, S., Cross, R., & Hodgson, J. H. (2002). Emissions of nitrous oxide and nitric oxide associated with the decomposition of arable crop residues on a sandy loam soil in eastern England. Agronomie, 22, 731–738.CrossRefGoogle Scholar
  38. Henderson, S. L., Dandie, C. E., Patten, C. L., Zebarth, B. J., Burton, D. L., Trevors, J. T., & Goyer, C. (2010). Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Applied and Environmental Microbiology, 76, 2155–2164.CrossRefGoogle Scholar
  39. Huang, Y., Zou, J. W., Zheng, X. H., Wang, Y. S., & Xu, X. K. (2004). Nitrous oxide emissions as influenced by amendment of plant residues with different C: N ratios. Soil Biology and Biochemistry, 36(6), 973–981.CrossRefGoogle Scholar
  40. Intergovernmental Panel on Climate Change. (2001). IPCC: Guidelines for national greenhouse gas inventories: agriculture, forestry and other land use (Chapter 11). In: Klein, C.D. (Ed.), N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application, vol. 4. IGES.Google Scholar
  41. International Panel on Climate Change. (2006). IPCC. Jim Penman (UK), Michael Gytarsky (Russia), Taka Hiraishi (Japan), William Irving (USA), and Thelma Krug (Brazil). Guidelines for national greenhouse gas inventories. pp. 8.Google Scholar
  42. International Panel on Climate Change. (2007). IPCC: the physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tigno, & H. L. Miller (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (p. 996). Cambridge and New York: Cambridge University Press.Google Scholar
  43. International Panel on Climate Change. (2013). IPCC: The physical science basis. In G. D. Myhre, F. M. Shindell, W. Bréon, J. Collins, J. Fuglestvedt, D. Huang, J. F. Koch, D. Lamarque, B. Lee, T. Mendoza, A. Nakajima, G. Robock, T. Stephens, C. Takemura, & H. Zhang (Eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (p. 714). Cambridge and New York: Cambridge University Press.Google Scholar
  44. IPCC. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Geneva: IPCC.Google Scholar
  45. Isla, R., Cavero, J., Yagüe, R., & Quilez, D. (2006). Balances de nitrógeno en cultivo de maíz en regadío en Aragón. In M. Quemada (Ed.), Balance de nitrógeno en sistemas de cultivo de cereal de invierno y de maíz en varias regiones españolas. Monografías INIA: Serie Agrícola n° 22 (pp. 107–124). Madrid: INIA.Google Scholar
  46. Jahangir, M. M. R., Roobroeck, D., Van Cleemput, O., & Boeckx, P. (2011). Spatial variability and biophysicochemical controls on N2O emissions from differently tilled arable soils. Biology and Fertility of Soils, 47, 753–766. Scholar
  47. Jarvis, S. C., Stockdale, E. A., Shepherd, M. A., & Powlson, D. S. (1996). Nitrogen mineralization in temperate agricultural soils: Processes and measurement. Advances in Agronomy, 57, 187–235.CrossRefGoogle Scholar
  48. Jin V.L., Baker J.M., Johnson J.M.F., Karlen D.L., Lehman R.M., Osborne S.L., Sauer T.J., Stott D.E., Varvel G.E., Venterea R.T.,. Schmer M.R, Wienhold B.J. (2014). Soil Greenhouse Gas Emissions in Response to Corn Stover Removal and Tillage Management Across the US Corn Belt. Bioenergy Research, 7, 517–527.
  49. Johanson, J., Barbours, N. W. (2010). Crop yield and greenhouse gas responses to stover harvest on glacial till Mollisol. 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010, Brisbane, Australia.Google Scholar
  50. Johnson, J. M. F., Allmaras, R. R., & Reicosky, D. C. (2006). Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agronomy Journal, 98, 622–636.CrossRefGoogle Scholar
  51. Johnson, J.M.F., Reicosky, D., Sharratt, B., Lindstrom, H., Vorhees, W., Carpenter- Boggs, L. (2004) Characterization of soil amended with the by-product of corn stover fermentation. Soil Science Society America Journal 68, 139–149.Google Scholar
  52. Ju, X., Liu, X., Zhang, F., & Roelcke, M. (2004). Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. Ambio, 33, 300–305.CrossRefGoogle Scholar
  53. Ju, X., Lu, X., Gao, Z., Chen, X., Su, F., Kogge, M., Römheld, V., Christie, P., & Zhang, F. (2011). Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environmental Pollution, 159, 1007–1016.CrossRefGoogle Scholar
  54. Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Christie, P., Zhu, Z. L., & Zhang, F. S. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences, 106, 3041–3046.CrossRefGoogle Scholar
  55. Keller, J., White, J., Bridgham, S., & Pastor, J. (2004). Climate change effects on carbon and nitrogen mineralization in peatlands through changes in soil quality. Global Change Biology, 10, 1053–1064. Scholar
  56. Kirschbaum, M. U. F. (1995). The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 24, 753–760.CrossRefGoogle Scholar
  57. Kremen, A., Bear, J., Shavit, U., & Shaviv, A. (2005). Model demonstrating the potential for coupled nitrification denitrification in soil aggregates. Environmental Science & Technology, 39, 4180–4188.CrossRefGoogle Scholar
  58. Kumar, K., & Goh, K. M. (1999). Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Advances in Agronomy, 68, 197–319.CrossRefGoogle Scholar
  59. La Scala, N., Lopes, A., Spokas, K., Archer, D., & Reicosky, D. C. (2009). Short-term temporal changes of bare soil CO2 fluxes after tillage described by first-order decay models. European Journal of Soil Science, 60, 258–264.CrossRefGoogle Scholar
  60. Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., & van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: Retrospect and prospects. Advances in Agronomy, 87, 85–156.CrossRefGoogle Scholar
  61. Lal, R. (2005). World crop residues production and implications of its use as a biofuel. Environment International, 31, 575–584. Scholar
  62. Laville, P., Lehuger, S., Loubet, B., Chaumartin, F., & Cellier, P. (2011). Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agricultural and Forest Meteorology, 151, 228–240.CrossRefGoogle Scholar
  63. Legg, J. O., Stanford, G., & Bennett, O. L. (1979). Utilization of labelled-N fertilizer by silage corn under conventional and notill culture. Agronomy Journal, 71, 1009–1015.CrossRefGoogle Scholar
  64. Lin, S., Iqbal, J., Hu, R. G., & Feng, M. L. (2010). N2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems and Environment, 136, 40–48.CrossRefGoogle Scholar
  65. Linquist, B., van Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C., & van Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal corps. Global Change Biology, 18, 194–209.CrossRefGoogle Scholar
  66. Lloveras, J. S., Berenguer, P., Biau, A., Santiveri, F., Guillén, M., Quilez, D., & Isla, R. (2012). Recomendaciones generales para la fertilización del maíz. Vida Rural, 340, 24–30.Google Scholar
  67. López-Bellido, L., López-Bellido, R. J., & Redondo, R. (2005). Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crops Research, 94(1), 86–97.CrossRefGoogle Scholar
  68. Maris, S. C., Teira-Esmatges, M. R., Arbonés, A., & Rufat, J. (2015). Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard. Science of the Total Environment, 538, 966–978.CrossRefGoogle Scholar
  69. Maris, S. C., Teira-Esmatges, M. R., Bosch-Serra, A. D., Moreno-García, B., & Català, M. M. (2016b). Effect of fertilising with pig slurry and chicken manure on GHG emissions from Mediterranean paddies. Science of the Total Environment, 569–570, 306–320.CrossRefGoogle Scholar
  70. Maris, S. C., Teira-Esmatges, M. R., & Catala, M. M. (2016a). Influence of irrigation frequency on greenhouse gases emission from a paddy soil. Paddy and Water Environment, 14, 199–210. Scholar
  71. Martínez, E., Domingo, F., Roselló, A., Bosch-Serra, J., Boixadera, J., & Lloveras, J. (2017a). The effects of dairy cattle manure and mineral N fertilizer on irrigated maize and soil N and organic C. European Journal of Agronomy, 83, 78–85.CrossRefGoogle Scholar
  72. Martínez, E., Maresma, A., Biau, A., Cela, S., Berenguer, P., Santiveri, F., & Lloveras, J. (2017b). Long-term effects of mineral nitrogen fertilizer on irrigated maize and soil properties. Agronomy Journal, 109, 1–11. Scholar
  73. Martínez-Cob, A. (2008). Use of thermal units to estimate corn crop coefficients under semiarid climatic conditions. Irrigation Science, 26, 335–345.CrossRefGoogle Scholar
  74. Meisinger, J. J., Bandel, V. A., Stanford, G., & Legg, J. O. (1985). Nitrogen utilization of corn under minimum tillage and moldboard plow tillage. 1. Four-years results using labelled N fertilizer on an Atlantic coastal plain soil. Agronomy Journal, 77, 602–611.CrossRefGoogle Scholar
  75. Mestdagh, I., Lootens, P., Van Cleemput, O., & Carlier, L. (2002). Kyoto protocol: Carbon sequestration in Belgian grasslands. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen RUG, 67, 183–184.Google Scholar
  76. Millar, N., & Baggs, E. M. (2004). The chemical composition or quality of agroforestry residues influences N2O emissions after their addition to soils. Soil Biology and Biochemistry, 36, 935–943.CrossRefGoogle Scholar
  77. Miller, M. N., Zebarth, B. J., Dandie, C. E., Burton, D. L., Goyer, C., & Trevors, J. T. (2008). Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biology and Biochemistry, 40(10), 2553–2562.CrossRefGoogle Scholar
  78. Paul, E. A., Clark, F. E. (1996). Ammonification and nitrification and the fate of nitrate. In: Soil Microbiology and biochemistry (pp. 182–213), 2nd ed. San Diego: Academic Press.Google Scholar
  79. Pihlatie, M., Syväsalo, E., Asko, S., Martti, E., & Regina, K. (2004). Contribution of nitrification and denitrification to N2O production in peat, clay and loam sand soils under different soil moisture conditions. Nutrient Cycling in Agroecosystems, 70, 135–141.CrossRefGoogle Scholar
  80. Porta, J., Lopez-Acevedo, M., & Poch, R. M. (2008). Introduccion a la Edafologia uso y protección del suelo. Ediciones Mundi-Prensa: Madrid-Barcelona-México.Google Scholar
  81. Sainju, U. M., Jabro, J. D., & Stevens, W. B. (2008). Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environmental Quality, 37, 98–106. Scholar
  82. Sänger, A., Geisseler, D., & Ludwig, B. (2011). Effects of moisture and temperature on greenhouse gas emissions and C and N leaching losses in soil treated with biogas slurry. Biology and Fertility of Soils, 47(3), 249–259.CrossRefGoogle Scholar
  83. Sanz-Coben, A., Lassaletta, L., Aguilera, E., del Prado, A., Garnier, J., Billen, G., Iglesias, A., Sánchez, B., Guardia, G., Ábalos, D., Plaza-Bonilla, D., Puigdueta-Bartolomé, I., Moral, R., Galán, E., Arriaga, H., Merino, P., Infante-Amate, J., Meijide, A., Pardo, G., Álvaro-Fuentes, J., Gilsanz, C., Báez, D., Doltra, J., González-Ubierna, S., Cayuela, M. L., Menéndez, S., Díaz-Pinés, E., Le-Noë, J., Quemada, M., Estellés, F., Calvet, S., van Grinsven, H. J. M., Westhoek, H., Sanz, M. J., Gimeno, B. S., Vallejo, A., & Smith, P. (2017). Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculure, Ecosystems and Environment, 238, 5–24.CrossRefGoogle Scholar
  84. Sanz-Cobena, A., García-Marco, S., Quemada, M., Gabriel, J. L., Almendros, P., & Vallejo, A. (2014). Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Science of the Total Environment, 466, 164–174.CrossRefGoogle Scholar
  85. Sanz-Cobena, A., Sánchez-Martín, L., García-Torres, L., & Vallejo, A. (2012). Gaseous emissions of N2O and NO and NO3 leaching from urea applied with urease and nitrification inhibitors to a maize (Zea Mays) crop. Agriculture, Ecosystems and Environment, 149, 64–73.CrossRefGoogle Scholar
  86. Simonis, A.D. (1988). Studies on nitrogen use efficiency in cereals. In: Jenkinson, D.S. and Smith, K.A (eds.). Nitrogen efficiency in agricultural soils (pp. 110–124). Elsevier: London.Google Scholar
  87. Singh, B., Shan, Y. H., Johnson-Beebout, S. E., Singh, Y., & Buresh, R. J. (2008). Crop residue management for lowland rice based cropping systems in Asia. Advances in Agronomy, 98, 117–199.CrossRefGoogle Scholar
  88. Sisquella, M., Lloveras, J., Álvaro, J., Santiveri, P., Cantero, C., (2004) Técnicas de cultivo para la producción de maíz, trigo y alfalfa en los regadíos del valle del Ebro. Proyecto Trama-Life.Fundació Catalana De Cooperació, Lleida, Spain. pp. 24–30.Google Scholar
  89. Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., & Rey, A. (2003). Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. European Journal of Soil Science, 54, 779–791.CrossRefGoogle Scholar
  90. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., & Kumar, P. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B, 363, 789–813.CrossRefGoogle Scholar
  91. Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133(3–4), 247–266.CrossRefGoogle Scholar
  92. Soil Survey Staff. (1992). Keys to soil taxonomy (6th ed.). Washington: USDA.Google Scholar
  93. Staley, T. M., & Perry, H. D. (1995). Maize silage utilization of fertilizer and soil nitrogen on a hill-land Ultisol relative to tillage method. Agronomy Journal, 87, 835–842.CrossRefGoogle Scholar
  94. Stange, F., & Döhling, F. (2005). 15N tracing model SimKIM to analyse the NO and N2O production during autotrophic, heterotrophic nitrification, and denitrification in soils. Isotopes in Environmental and Health Studies, 41, 261–274.CrossRefGoogle Scholar
  95. Stark, M., & Firestone, M. K. (1995). Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology, 61, 218–221.Google Scholar
  96. Tate, K. R. (2015). Soil methane oxidation and land-use change - from process to mitigation. Soil Biology and Biochemistry, 80, 260–272.CrossRefGoogle Scholar
  97. Toma Y and Hatano R. (2007). Effect of crop residue C:N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition 53, 198–205.Google Scholar
  98. Toma, Y., Kimura, S. D., Hirose, Y., Kusa, K., & Hatano, R. (2007). Variation in the emission factor of N2O derived from chemical nitrogen fertilizer and organic matter: A case study of onion fields in Mikasa, Hokkaido, Japan. Soil Science & Plant Nutrition, 53, 692–703.CrossRefGoogle Scholar
  99. van Groenigen, J. W., Huygens, D., Boeckx, P., Kuyper, T. W., Lubbers, I. M., Rütting, T., & Groffman, P. M. (2015). The soil N cycle: New insights and key challenges. The Soil, 1, 235–256. Scholar
  100. Van Groenigena, J. W., Velthof, G. L., Van Groenigenc, K. J., & Van Kesseld, C. (2010). Towards an agronomic assessment of N2O emissions: A case study for arable crops. European Journal of Soil Science, 61, 903–913. Scholar
  101. Venterea, R. T., Burger, M., & Spokas, K. A. (2005). Nitrogen oxide and methane emissions under varying tillage and fertilizer management. Journal of Environmental Quality, 34, 1467–1477.CrossRefGoogle Scholar
  102. Verchot, L. V., Hutabarat, L., Hairaih, K., & van Noordwijk, M. (2006). Nitrogen availability and soil N2O emission following coversion of forests to coffee in southern Sumatra. Global Biogeochemical Cycles, 20, GB4008. Scholar
  103. Villar-Mir, J., & Villar-Mir, P. (2002). On-farm monitoring of soil nitrate-nitrogen in irrigated cornfields in the Ebro Valley (Northeast Spain). Agronony, 3, 373–380.CrossRefGoogle Scholar
  104. Wang, J., Sainju, U. M., & Barsotti, J. L. (2012). Residue placement and rate, crop species, and nitrogen fertilization effects on soil greenhouse gas emissions. Journal of Environmental Protection, 3, 1238–1250.CrossRefGoogle Scholar
  105. Wilhelm, W., Johnson, J., Hatfield, J., Voorhees, W., & Linden, D. (2004). Crop and soil productivity response to corn residue removal: A literature review. Agronomy Journal, 96, 1–17. Scholar
  106. Wilts, A.R., Reicosky, D.C., Allmaras, R.R., Clapp C.E. (2004). Long-term corn residue effects: harvest alternatives, soil carbon turnover, and root derived carbon. Soil Science Society America Journal, 68, 1342–1351.Google Scholar
  107. Wrage, N., van Groenigen, J. W., Oenema, O., & Baggs, E. M. (2005). A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Communications in Mass Spectrometry, 19, 1–10.CrossRefGoogle Scholar
  108. Wrage, N., Velthof, G. L., van Beusichem, M. L., & Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33, 1723–1732.CrossRefGoogle Scholar
  109. Yagüe, M. R., & Quílez, D. (2010). Cumulative and residual effects of swine slurry and mineral nitrogen in irrigated maize. Agronomy Journal, 102, 1682–1691.CrossRefGoogle Scholar
  110. Yan, X. Y., Akiyama, H., Yagi, K., & Akimoto, H. (2009). Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Global Biogeochemical Cycles, 23, GB2002.CrossRefGoogle Scholar
  111. Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528(7580), 51–59.Google Scholar
  112. Zhang, Y. M., Chen, D. L., Zhang, J. B., Edis, R., Hu, C. S., & Zhu, A. N. (2004). Ammonia volatilization and denitrification losses from an irrigated maize-wheat rotation field in the North China plain. Pedosphere, 14(4), 533–540.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • S. C. Maris
    • 1
    Email author
  • J. Lloveras
    • 2
  • A. Vallejo
    • 3
  • M. R. Teira-Esmatges
    • 1
  1. 1.Environment and Soil Science DepartmentUniversity of LleidaLleidaSpain
  2. 2.Field Crops DepartmentUniversitat de LleidaLleidaSpain
  3. 3.Dpto. Química y Tecnología de Alimentos, ETSIAABUniversidad Politécnica de MadridMadridSpain

Personalised recommendations