Skip to main content

Fates and Impacts of Nanomaterial Contaminants in Biological Wastewater Treatment System: a Review

Abstract

Nowadays, engineered nanoparticles (NPs) have been widely employed in research, medical, and industrial fields due to their nanoscale-induced unique physicochemical properties. The increasing application of diverse NPs would inevitably cause their release into municipal wastewater treatment plants (WWTPs) and pose potential toxicities to biological treatment systems. The fates and behaviors of NPs and their biological toxicity effects in the WWTPs were extensively reviewed. The potential nanotoxicity mechanisms were discussed at physiological and transcriptional levels and the factors to impact NP performances in WWTPs were explicated. Finally, the highly expected but yet solved difficulties such as toxicity standardization for various NPs in WWTPs, NP detection techniques, potential bio- or abiotic markers for nanotoxicity measurement, and nanotoxicity attenuation strategies are proposed. The critical insights of NP impacts on biological wastewater treatment systems provide fundamental and theoretical supports for NP risk assessments and emergency regulation in WWTPs in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Alito, C. L., & Gunsch, C. K. (2014). Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors. Environmental Science and Technology, 48(2), 970–976.

    CAS  Article  Google Scholar 

  • Ansari, M. A., Khan, H. M., Khan, A. A., Cameotra, S. S., Saquib, Q., & Musarrat, J. (2014). Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of Applied Microbiology, 116(4), 772–783.

    CAS  Article  Google Scholar 

  • Arnaout, C. L., & Gunsch, C. K. (2012). Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea. Environmental Science and Technology, 46(10), 5387–5395.

    CAS  Article  Google Scholar 

  • Barnard, J. L. (1975). Biological nutrient removal without the addition of chemicals. Water Research, 9(5–6), 485–490.

    CAS  Article  Google Scholar 

  • Barton, L. E., Auffan, M., Bertrand, M., Barakat, M., Santaella, C., Masion, A., et al. (2014). Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor. Environmental Science and Technology, 48(13), 7289–7296.

    CAS  Article  Google Scholar 

  • Beddow, J., Stolpe, B., Cole, P., Lead, J. R., Sapp, M., Lyons, B. P., et al. (2014). Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environmental Microbiology Reports, 6(5), 448–458.

    CAS  Article  Google Scholar 

  • Bera, R. K., Mandal, S. M., & Raj, C. R. (2014). Antimicrobial activity of fluorescent Ag nanoparticles. Letters in Applied Microbiology, 58(6), 520–526.

    CAS  Article  Google Scholar 

  • Brar, S. K., Verma, M., Tyagi, R. D., & Surampalli, R. Y. (2010). Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Management, 30(3), 504–520.

    CAS  Article  Google Scholar 

  • Chaúque, E. F. C., Zvimba, J. N., Ngila, J. C., & Musee, N. (2014). Stability studies of commercial ZnO engineered nanoparticles in domestic wastewater. Physics and Chemistry of the Earth Parts A/b/c, 67–69(12), 140–144.

    Article  Google Scholar 

  • Chambers, B. A., Afrooz, A. R., Bae, S., Aich, N., Katz, L., Saleh, N. B., et al. (2014). Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environmental Science and Technology, 48(1), 761–769.

    CAS  Article  Google Scholar 

  • Chen, H., Li, X., Chen, Y., Liu, Y., Zhang, H., & Xue, G. (2015). Performance of wastewater biological phosphorus removal under long-term exposure to CuNPs: adapting toxicity via microbial community structure adjustment. RSC Advances, 5(75), 61094–61102.

    CAS  Article  Google Scholar 

  • Chen, H., Zheng, X., Chen, Y., & Mu, H. (2013). Long-term performance of enhanced biological phosphorus removal with increasing concentrations of silver nanoparticles and ions. RSC Advances, 3(25), 9835–9842.

    CAS  Article  Google Scholar 

  • Chen, J., Tang, Y. Q., Li, Y., Nie, Y., Hou, L., Li, X. Q., et al. (2014). Impacts of different nanoparticles on functional bacterial community in activated sludge. Chemosphere, 104, 141–148.

    CAS  Article  Google Scholar 

  • Chen, Y., Hong, C., Xiong, Z., & Hui, M. (2012a). The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms. Journal of Hazardous Materials, 239-240(18), 88–94.

    CAS  Article  Google Scholar 

  • Chen, Y., Su, Y., Zheng, X., Chen, H., & Yang, H. (2012b). Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Research, 46(14), 4379–4386.

    CAS  Article  Google Scholar 

  • Chen, Y. G., Wang, D. B., Zhu, X. Y., Zheng, X., & Feng, L. Y. (2012c). Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environmental Science and Technology, 46(22), 12452–12458.

    CAS  Article  Google Scholar 

  • Choi, O., Clevenger, T. E., Deng, B., Surampalli, R. Y., Ross Jr., L., & Hu, Z. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research, 43(7), 1879–1886.

    CAS  Article  Google Scholar 

  • Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42(12), 4583–4588.

    CAS  Article  Google Scholar 

  • Choi, O., & Hu, Z. (2009). Role of reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles. Journal of Environmental Engineering, 135(12), 1365–1370.

    CAS  Article  Google Scholar 

  • Dasari, T. P., Pathakoti, K., & Hwang, H.-M. (2013). Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. Journal of Environmental Sciences, 25(5), 882–888.

    CAS  Article  Google Scholar 

  • De Clippeleir, H., Defoirdt, T., Vanhaecke, L., Vlaeminck, S., Carballa, M., Verstraete, W., et al. (2011). Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied Microbiology and Biotechnology, 90(4), 1511–1519.

    CAS  Article  Google Scholar 

  • Dimkpa, C. O., Calder, A., Britt, D. W., McLean, J. E., & Anderson, A. J. (2011a). Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environmental Pollution, 159(7), 1749–1756.

    CAS  Article  Google Scholar 

  • Dimkpa, C. O., Calder, A., Gajjar, P., Merugu, S., Huang, W. J., Britt, D. W., et al. (2011b). Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. Journal of Hazardous Materials, 188(1–3), 428–435.

    CAS  Article  Google Scholar 

  • Everett, W. N., Chern, C., Sun, D., McMahon, R. E., Zhang, X., Chen, W. J., et al. (2014). Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates. Toxicology Letters, 225(1), 177–184.

    CAS  Article  Google Scholar 

  • Eduok, S., Ferguson, R., Jefferson, B., Villa, R., & Coulon, F. (2017). Aged-engineered nanoparticles effect on sludge anaerobic digestion performance and associated microbial communities. Science of the Total Environment, 609, 232–241.

    CAS  Article  Google Scholar 

  • Eduok, S., Hendry, C., Ferguson, R., Martin, B., Villa, R., Jefferson, B., et al. (2015). Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microbiology Ecology, 91(7), fiv082.

    Article  CAS  Google Scholar 

  • Eduok, S., Martin, B., Villa, R., Nocker, A., Jefferson, B., & Coulon, F. (2013). Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: current status and challenges. Ecotoxicology and Environmental Safety, 95(1), 1–9.

    CAS  Article  Google Scholar 

  • Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez, P. J. (2007). Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environmental Science and Technology, 41(7), 2636–2642.

    CAS  Article  Google Scholar 

  • Fang, X., Yu, R., Li, B., Somasundaran, P., & Chandran, K. (2010). Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. Journal of Colloid and Interface Science, 348(2), 329–334.

    CAS  Article  Google Scholar 

  • García-Contreras, R., Nuñez-López, L., Jasso-Chávez, R., Kwan, B. W., Belmont, J. A., Rangel-Vega, A., et al. (2015). Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. The ISME Journal, 9(1), 115–125.

    Article  CAS  Google Scholar 

  • Gartiser, S., Flach, F., Nickel, C., Stintz, M., Damme, S., Schaeffer, A., et al. (2014). Behavior of nanoscale titanium dioxide in laboratory wastewater treatment plants according to OECD 303 A. Chemosphere, 104, 197–204.

    CAS  Article  Google Scholar 

  • Gomez-Rivera, F., Field, J. A., Brown, D., & Sierra-Alvarez, R. (2012). Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment. Bioresource Technology, 108, 300–304.

    CAS  Article  Google Scholar 

  • Grady, C. P. L., et al. (2011). Biological wastewater treatment. Boca Raton: CRC Press.

    Google Scholar 

  • Gu, L., Li, Q., Quan, X., Cen, Y., & Jiang, X. (2014). Comparison of nanosilver removal by flocculent and granular sludge and short- and long-term inhibition impacts. Water Research, 58(7), 62–70.

    CAS  Article  Google Scholar 

  • Gunawan, C., Teoh, W. Y., Marquis, C. P., & Amal, R. (2011). Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano, 5(9), 7214–7225.

    CAS  Article  Google Scholar 

  • Hahn, M. W., & O'Melia, C. R. (2004). Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environmental Science and Technology, 38(1), 210–220.

    CAS  Article  Google Scholar 

  • Hai, R., Wang, Y., Wang, X., Du, Z., & Li, Y. (2014). Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge. PLoS One, 9(9), e107345–e107345.

    Article  CAS  Google Scholar 

  • Hancock, D. E., Indest, K. J., Gust, K. A., & Kennedy, A. J. (2012). Effects of C60 on the Salmonella typhimurium TA100 transcriptome expression: Insights into C60-mediated growth inhibition and mutagenicity. Environmental Toxicology and Chemistry, 31(7), 1438–1444.

    CAS  Article  Google Scholar 

  • He, Q., Gao, S., Zhang, S., Zhang, W., & Wang, H. (2017). Chronic responses of aerobic granules to zinc oxide nanoparticles in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Bioresource Technology, 238, 95–101.

    CAS  Article  Google Scholar 

  • Hessler, C. M., Wu, M.-Y., Xue, Z., Choi, H., & Seo, Y. (2012). The influence of capsular extracellular polymeric substances on the interaction between TiO2 nanoparticles and planktonic bacteria. Water Research, 46(15), 4687–4696.

    CAS  Article  Google Scholar 

  • Hooper, A. B., Vannelli, T., Bergmann, D. J., & Arciero, D. M. (1997). Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek, 71(1), 59–67.

    CAS  Article  Google Scholar 

  • Hou, L. L., Li, K. Y., Ding, Y. Z., Li, Y., Chen, J., Wu, X. L., et al. (2012). Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere, 87(3), 248–252.

    CAS  Article  Google Scholar 

  • Hou, L. L., Xia, J., Li, K. Y., Chen, J., Wu, X. L., & Li, X. Q. (2013). Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4+-N reduction. Water Science and Technology, 67(2), 254–260.

    CAS  Article  Google Scholar 

  • Huang, F., Ge, L., Zhang, B., Wang, Y., Tian, H., Zhao, L., et al. (2014). A fullerene colloidal suspension stimulates the growth and denitrification ability of wastewater treatment sludge-derived bacteria. Chemosphere, 108, 411–417.

    CAS  Article  Google Scholar 

  • Jenkins, D., Richard, M. G., & Daigger, G. (1993). Manual of the control of activated sludge bulking and foaming (2ed.). Michigan: Lewis Publisher.

    Google Scholar 

  • Jiang, C., Liu, Y., Chen, Z., Megharaj, M., & Naidu, R. (2013). Impact of iron-based nanoparticles on microbial denitrification by Paracoccus sp. strain YF1. Aquatic Toxicology, 142-143, 329–335.

    CAS  Article  Google Scholar 

  • Jiang, W. (2011). Bacterial toxicity of oxide nanoparticles and their effects on bacterial surface biomolecules. Dissertation, University of Massachusetts Amherst.

  • Joshi, N., Ngwenya, B. T., & French, C. E. (2012). Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. Journal of Hazardous Materials, 241–242, 363–370.

    Article  CAS  Google Scholar 

  • Kaegi, R., Voegelin, A., Ort, C., Sinnet, B., Thalmann, B., Krismer, J., et al. (2013). Fate and transformation of silver nanoparticles in urban wastewater systems. Water Research, 47(12), 3866–3877.

    CAS  Article  Google Scholar 

  • Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., et al. (2011). Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environmental Science and Technology, 45(9), 3902–3908.

    CAS  Article  Google Scholar 

  • Kakinen, A., Ding, F., Chen, P. Y., Mortimer, M., Kahru, A., & Ke, P. C. (2013). Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. Nanotechnology, 24(34), 311–320.

    Article  CAS  Google Scholar 

  • Kallay, N., & Žalac, S. (2002). Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. Journal of Colloid and Interface Science, 253(1), 70–76.

    CAS  Article  Google Scholar 

  • Keilin, D., & Hartree, E. F. (1939). Cytochrome and cytochrome oxidase. Proceedings of the Royal Society of London, 127(847), 167–191.

    CAS  Article  Google Scholar 

  • Keller, A. A., Mcferran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6), 1692.

    Article  Google Scholar 

  • Kent, R. D., Oser, J. G., & Vikesland, P. J. (2014). Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environmental Science and Technology, 48(15), 8564–8572.

    CAS  Article  Google Scholar 

  • Kim, B. J., Park, C. S., Murayama, M., & Hochella, M. F. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmental Science and Technology, 44(19), 7509–7514.

    CAS  Article  Google Scholar 

  • Kostigen Mumper, C., Ostermeyer, A. K., Semprini, L., & Radniecki, T. S. (2013). Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Chemosphere, 93(10), 2493–2498.

    CAS  Article  Google Scholar 

  • Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology and Medicine, 51(10), 1872–1881.

    CAS  Article  Google Scholar 

  • Kunkalekar, R. K., Prabhu, M. S., Naik, M. M., & Salker, A. V. (2014). Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria. Colloids and Surfaces B: Biointerfaces, 113, 429–434.

    CAS  Article  Google Scholar 

  • Li, A.-J., Hou, B.-1., & Li, M.-X. (2015). Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones. Bioresource Technology, 196, 550–558.

    CAS  Article  Google Scholar 

  • Li, D., Cui, F., Zhao, Z., Liu, D., Xu, Y., Li, H., et al. (2014). The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge. Biodegradation, 25(2), 167–177.

    Article  CAS  Google Scholar 

  • Li, M., Zhu, L., & Lin, D. (2011). Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environmental Science and Technology, 45(5), 1977–1983.

    CAS  Article  Google Scholar 

  • Li, Z., Wang, X., Ma, B., Wang, S., Zheng, D., She, Z., et al. (2017). Long-term impacts of titanium dioxide nanoparticles (TiO2 NPs) on performance and microbial community of activated sludge. Bioresource Technology, 238, 361–368.

    CAS  Article  Google Scholar 

  • Liang, Z., Das, A., & Hu, Z. (2010). Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Research, 44(18), 5432–5438.

    CAS  Article  Google Scholar 

  • Liu, G., Wang, D., Wang, J., & Mendoza, C. (2011). Effect of ZnO particles on activated sludge: role of particle dissolution. Science of the Total Environment, 409(14), 2852–2857.

    CAS  Article  Google Scholar 

  • Liu, S. B., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., et al. (2009). Sharper and faster “Nano Darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano, 3(12), 3891–3902.

    CAS  Article  Google Scholar 

  • Liu, Y., & Tay, J.-H. (2004). State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 22(7), 533–563.

    CAS  Article  Google Scholar 

  • Lombi, E., Donner, E., Taheri, S., Tavakkoli, E., Jamting, A. K., McClure, S., et al. (2013). Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environmental Pollution, 176, 193–197.

    CAS  Article  Google Scholar 

  • Lombi, E., Donner, E., Tavakkoli, E., Turney, T. W., Naidu, R., Miller, B. W., et al. (2012). Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environmental Science and Technology, 46(16), 9089–9096.

    CAS  Article  Google Scholar 

  • Luna-delRisco, M., Orupold, K., & Dubourguier, H. C. (2011). Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. Journal of Hazardous Materials, 189(1–2), 603–608.

  • Ma, J., Quan, X., Si, X., & Wu, Y. (2013). Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms. Bioresource Technology, 149, 346–352.

    CAS  Article  Google Scholar 

  • Ma, R., Levard, C., Judy, J. D., Unrine, J. M., Durenkamp, M., Martin, B., et al. (2014). Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmental Science and Technology, 48(1), 104–112.

    CAS  Article  Google Scholar 

  • Ma, Y., Metch, J. W., Vejerano, E. P., Miller, I. J., Leon, E. C., Marr, L. C., et al. (2015). Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Research, 68, 87–97.

    CAS  Article  Google Scholar 

  • Meddows, T. R., Savory, A. P., Grove, J. I., Moore, T., & Lloyd, R. G. (2005). RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Molecular Microbiology, 57(1), 97–110.

    CAS  Article  Google Scholar 

  • Mu, H., & Chen, Y. (2011). Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Research, 45(17), 5612–5620.

    CAS  Article  Google Scholar 

  • Mu, H., Chen, Y., & Xiao, N. (2011). Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresource Technology, 102(22), 10305–10311.

    CAS  Article  Google Scholar 

  • Mu, H., Zheng, X., Chen, Y. G., Chen, H., & Liu, K. (2012). Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment. Environmental Science and Technology, 46(11), 5997–6003.

    CAS  Article  Google Scholar 

  • Mukherjee, B., & Weaver, J. W. (2010). Aggregation and charge behavior of metallic and nonmetallic nanoparticles in the presence of competing similarly-charged inorganic ions. Environmental Science and Technology, 44(9), 3332–3338.

    CAS  Article  Google Scholar 

  • Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.

    CAS  Article  Google Scholar 

  • Nghiem, Y., Cabrera, M., Cupples, C. G., & Miller, J. H. (1988). The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions. Proceedings of the National Academy of Sciences, 85(8), 2709–2713.

    CAS  Article  Google Scholar 

  • Nielsen, A. H., Vollertsen, J., Jensen, H. S., Madsen, H. I., & Hvitved-Jacobsen, T. (2008). Aerobic and anaerobic transformations of sulfide in a sewer system: field study and model simulations. Water Environment Research, 80(1), 16–25.

    CAS  Article  Google Scholar 

  • Ostermeyer, A. K., Kostigen Mumuper, C., Semprini, L., & Radniecki, T. (2013). Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environmental Science and Technology, 47(24), 14403–14410.

    CAS  Article  Google Scholar 

  • Otero-González, L., Field, J. A., & Sierra-Alvarez, R. (2014). Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. Journal of Environmental Management, 135, 110–117.

    Article  CAS  Google Scholar 

  • Pavagadhi, S., Sathishkumar, M., & Balasubramanian, R. (2014). Uptake of Ag and TiO2 nanoparticles by zebrafish embryos in the presence of other contaminants in the aquatic environment. Water Research, 55, 280–291.

    CAS  Article  Google Scholar 

  • Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9), 1109.

    Article  Google Scholar 

  • Puay, N. Q., Qiu, G., & Ting, Y. P. (2015). Effect of ZnO nanoparticles on biological wastewater treatment in a sequencing batch reactor (SBR). Journal of Cleaner Production, 88, 139–145.

    CAS  Article  Google Scholar 

  • Qiu, T. A., Gallagher, M. J., Hudsonsmith, N. V., Wu, J., Krause, M. O. P., Fortner, J. D., et al. (2016). Research highlights: unveiling the mechanisms underlying nanoparticle-induced ROS generation and oxidative stress. Environmental Science Nano, 3(5), 940–945.

    CAS  Article  Google Scholar 

  • Radniecki, T. S., Stankus, D. P., Neigh, A., Nason, J. A., & Semprini, L. (2011). Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere, 85(1), 43–49.

    CAS  Article  Google Scholar 

  • Rathnayake, S., Unrine, J. M., Judy, J., Miller, A. F., Rao, W., & Bertsch, P. M. (2014). Multitechnique investigation of the pH dependence of phosphate induced transformations of ZnO nanoparticles. Environmental Science and Technology, 48(9), 4757–4764.

    CAS  Article  Google Scholar 

  • Reinsch, B. C., Levard, C., Li, Z., Ma, R., Wise, A., Gregory, K. B., et al. (2012). Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environmental Science and Technology, 46(13), 6992–7000.

    CAS  Article  Google Scholar 

  • Reyes, V. C., Opot, S. O., & Mahendra, S. (2015). Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles. Environmental Toxicology and Chemistry, 34(4), 887–897.

    CAS  Article  Google Scholar 

  • Sakarya, K., Akyol, Ç., & Demirel, B. (2015). The effect of short-term exposure of engineered nanoparticles on methane production during mesophilic anaerobic digestion of primary sludge. Water Air and Soil Pollution, 226(4), 1–9.

    CAS  Article  Google Scholar 

  • Schaumann, G. E., Philippe, A., Bundschuh, M., Metreveli, G., Klitzke, S., Rakcheev, D., et al. (2015). Understanding the fate and biological effects of Ag and TiO2 nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Science of the Total Environment, 535, 03–19.

    CAS  Article  Google Scholar 

  • Sheng, Z., Van Nostrand, J. D., Zhou, J., & Liu, Y. (2015). The effects of silver nanoparticles on intact wastewater biofilms. Frontiers in Microbiology, 6, 680.

    Google Scholar 

  • Sinha, R., Karan, R., Sinha, A., & Khare, S. K. (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresource Technology, 102(2), 1516–1520.

    CAS  Article  Google Scholar 

  • Sun, T. Y., Gottschalk, F., Hungerbuhler, K., & Nowack, B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Pollution, 185, 69–76.

    CAS  Article  Google Scholar 

  • Sun, X., Sheng, Z., & Liu, Y. (2013). Effects of silver nanoparticles on microbial community structure in activated sludge. Science of the Total Environment, 443, 828–835.

    CAS  Article  Google Scholar 

  • Tong, T., Shereef, A., Wu, J., Binh, C. T., Kelly, J. J., Gaillard, J. F., et al. (2013a). Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environmental Science and Technology, 47(21), 12486–12495.

    CAS  Article  Google Scholar 

  • Tong, T., Wilke, C. M., Wu, J., Binh, C. T. T., Kelly, J. J., Gaillard, J.-F., et al. (2015). Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environmental Science and Technology, 49(13), 8113–8123.

    CAS  Article  Google Scholar 

  • Tong, T. Z., Binh, C. T. T., Kelly, J. J., Gaillard, J. F., & Gray, K. A. (2013b). Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: Effects of environmental factors. Water Research, 47(7), 2352–2362.

    CAS  Article  Google Scholar 

  • Tong, T. Z., Fang, K. Q., Thomas, S. A., Kelly, J. J., Gray, K. A., & Gaillard, J. F. (2014). Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium. Environmental Science and Technology, 48(14), 7924–7932.

    CAS  Article  Google Scholar 

  • Tyagi, I., Gupta, V. K., Sadegh, H., Ghoshekandi, R. S., & Makhlouf, A. S. H. (2015). Nanoparticles as adsorbent: a positive approach for removal of noxious metal ions: a review. Science, Technology and Development, 34(3), 195–214.

    Article  Google Scholar 

  • Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Jr., M. F., Rejeski, D., et al. (2015). Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780.

    CAS  Article  Google Scholar 

  • Wang, C., Bobba, A. D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L.-P., et al. (2012b). Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size. Environmental Science and Technology, 46(13), 7151–7158.

    CAS  Article  Google Scholar 

  • Wang, S., Gao, M., She, Z., Zheng, D., Jin, C., Guo, L., et al. (2016). Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor. Bioresource Technology, 216, 428–436.

    CAS  Article  Google Scholar 

  • Wang, S. T., Li, S. P., Wang, W. Q., & You, H. (2015). The impact of zinc oxide nanoparticles on nitrification and the bacterial community in activated sludge in an SBR. RSC Advances, 5(82), 67335–67342.

    CAS  Article  Google Scholar 

  • Wang, Y., Westerhoff, P., & Hristovski, K. D. (2012a). Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. Journal of Hazardous Materials, 201-202, 16–22.

    CAS  Article  Google Scholar 

  • Wang, Z., Li, J., Zhao, J., & Xing, B. (2011). Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environmental Science and Technology, 45(14), 6032–6040.

    CAS  Article  Google Scholar 

  • Westerhoff, P., Song, G., Hristovski, K., & Kiser, M. A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. Journal of Environmental Monitoring, 13(5), 1195–1203.

    CAS  Article  Google Scholar 

  • Westerhoff, P. K., Kiser, A., & Hristovski, K. (2013). Nanomaterial removal and transformation during biological wastewater treatment. Environmental Engineering Science, 30(3), 109–117.

    CAS  Article  Google Scholar 

  • Whittaker, M., Bergmann, D., Arciero, D., & Hooper, A. B. (2000). Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1459(2), 346–355.

    CAS  Article  Google Scholar 

  • Wiesmann, U. (1994). Biological nitrogen removal from wastewater. Advances in Biochemical Engineering/Biotechnology, 51(51), 113–154.

    CAS  Article  Google Scholar 

  • Wu, J., Lu, H., Zhu, G., Chen, L., Chang, Y., & Yu, R. (2017). Regulation of membrane fixation and energy production/conversion for adaptation and recovery of ZnO nanoparticle impacted Nitrosomonas europaea. Applied Microbiology and Biotechnology, 101(7), 2953–2965.

    CAS  Article  Google Scholar 

  • Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12(8), 4271–4275.

    CAS  Article  Google Scholar 

  • Yang, W., Shen, C., Ji, Q., An, H., Wang, J., Liu, Q., et al. (2009). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 20(8), 085102.

    Article  CAS  Google Scholar 

  • Yang, Y., Chen, Q., Wall, J. D., & Hu, Z. Q. (2012a). Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Research, 46(4), 1176–1184.

    CAS  Article  Google Scholar 

  • Yang, Y., Li, M., Michels, C., Moreira-Soares, H., & Alvarez, P. J. J. (2014a). Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge. Environmental Toxicology and Chemistry, 33(10), 2234–2239.

    CAS  Article  Google Scholar 

  • Yang, Y., Quensen, J., Mathieu, J., Wang, Q., Wang, J., Li, M., et al. (2014b). Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Research, 48, 317–325.

    CAS  Article  Google Scholar 

  • Yang, Y., Wang, J., Xiu, Z., & Alvarez, P. J. (2013). Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environmental Toxicology and Chemistry, 32(7), 1488–1494.

    CAS  Google Scholar 

  • Yang, Y., Wang, J., Zhu, H., Colvin, V. L., & Alvarez, P. J. (2012b). Relative susceptibility and transcriptional response of nitrogen cycling bacteria to quantum dots. Environmental Science and Technology, 46(6), 3433–3441.

    CAS  Article  Google Scholar 

  • Yu, R., Fang, X., Somasundaran, P., & Chandran, K. (2015). Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea. Chemosphere, 128, 207–215.

    CAS  Article  Google Scholar 

  • Yu, R., Wu, J., Liu, M., Chen, L., Zhu, G., & Lu, H. (2016a). Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures. Environmental Science and Pollution Research, 23(13), 13023–13034.

    CAS  Article  Google Scholar 

  • Yu, R., Wu, J., Liu, M., Zhu, G., Chen, L., Chang, Y., et al. (2016b). Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea. Chemosphere, 153, 187–197.

    CAS  Article  Google Scholar 

  • Zhang, C., Liang, Z., & Hu, Z. (2013). Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Research, 50, 350–358.

    Article  CAS  Google Scholar 

  • Zhang, L., Jiang, Y., Ding, Y., Daskalakis, N., Jeuken, L., Povey, M., et al. (2010). Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research, 12(5), 1625–1636.

    CAS  Article  Google Scholar 

  • Zhang, Y., Chen, Y., Westerhoff, P., & Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43(17), 4249–4257.

    CAS  Article  Google Scholar 

  • Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., & Crittenden, J. C. (2008). Stability of commercial metal oxide nanoparticles in water. Water Research, 42(8), 2204–2212.

    CAS  Article  Google Scholar 

  • Zhao, J., Wang, Z., Dai, Y., & Xing, B. (2013). Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Research, 47(12), 4169–4178.

    CAS  Article  Google Scholar 

  • Zheng, X., Chen, Y., & Wu, R. (2011a). Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environmental Science and Technology, 45(17), 7284–7290.

    CAS  Article  Google Scholar 

  • Zheng, X., Su, Y., & Chen, Y. (2012). Acute and chronic responses of activated sludge viability and performance to silica nanoparticles. Environmental Science and Technology, 46(13), 7182–7188.

    CAS  Article  Google Scholar 

  • Zheng, X., Su, Y., Chen, Y., Wan, R., Li, M., Huang, H., et al. (2016). Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle. Scientific Reports, 6, 27748.

    CAS  Article  Google Scholar 

  • Zheng, X., Su, Y., Chen, Y., Wan, R., Liu, K., Li, M., et al. (2014). Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environmental Science and Technology, 48(23), 13800–13807.

    CAS  Article  Google Scholar 

  • Zheng, X. O., Wu, R., & Chen, Y. G. (2011b). Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environmental Science and Technology, 45(7), 2826–2832.

    CAS  Article  Google Scholar 

  • Zhou, X. H., Huang, B. C., Zhou, T., Liu, Y. C., & Shi, H. C. (2015). Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. Chemosphere, 119, 568–576.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (No. 51678134 and No.51208092), Natural Science Foundation of Jiangsu Province of China (BK20171154), the Fundamental Research Funds for the Central Universities, Innovative Graduate Student Project of Jiangsu Province (KYLX16_0282), and Scientific Research Foundation of Graduate School of Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhu, G. & Yu, R. Fates and Impacts of Nanomaterial Contaminants in Biological Wastewater Treatment System: a Review. Water Air Soil Pollut 229, 9 (2018). https://doi.org/10.1007/s11270-017-3656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3656-2

Keywords

  • Nanoparticle
  • Fate
  • Impact
  • Biological wastewater treatment
  • Toxicity