Alito, C. L., & Gunsch, C. K. (2014). Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors. Environmental Science and Technology, 48(2), 970–976.
CAS
Article
Google Scholar
Ansari, M. A., Khan, H. M., Khan, A. A., Cameotra, S. S., Saquib, Q., & Musarrat, J. (2014). Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of Applied Microbiology, 116(4), 772–783.
CAS
Article
Google Scholar
Arnaout, C. L., & Gunsch, C. K. (2012). Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea. Environmental Science and Technology, 46(10), 5387–5395.
CAS
Article
Google Scholar
Barnard, J. L. (1975). Biological nutrient removal without the addition of chemicals. Water Research, 9(5–6), 485–490.
CAS
Article
Google Scholar
Barton, L. E., Auffan, M., Bertrand, M., Barakat, M., Santaella, C., Masion, A., et al. (2014). Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor. Environmental Science and Technology, 48(13), 7289–7296.
CAS
Article
Google Scholar
Beddow, J., Stolpe, B., Cole, P., Lead, J. R., Sapp, M., Lyons, B. P., et al. (2014). Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environmental Microbiology Reports, 6(5), 448–458.
CAS
Article
Google Scholar
Bera, R. K., Mandal, S. M., & Raj, C. R. (2014). Antimicrobial activity of fluorescent Ag nanoparticles. Letters in Applied Microbiology, 58(6), 520–526.
CAS
Article
Google Scholar
Brar, S. K., Verma, M., Tyagi, R. D., & Surampalli, R. Y. (2010). Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Management, 30(3), 504–520.
CAS
Article
Google Scholar
Chaúque, E. F. C., Zvimba, J. N., Ngila, J. C., & Musee, N. (2014). Stability studies of commercial ZnO engineered nanoparticles in domestic wastewater. Physics and Chemistry of the Earth Parts A/b/c, 67–69(12), 140–144.
Article
Google Scholar
Chambers, B. A., Afrooz, A. R., Bae, S., Aich, N., Katz, L., Saleh, N. B., et al. (2014). Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environmental Science and Technology, 48(1), 761–769.
CAS
Article
Google Scholar
Chen, H., Li, X., Chen, Y., Liu, Y., Zhang, H., & Xue, G. (2015). Performance of wastewater biological phosphorus removal under long-term exposure to CuNPs: adapting toxicity via microbial community structure adjustment. RSC Advances, 5(75), 61094–61102.
CAS
Article
Google Scholar
Chen, H., Zheng, X., Chen, Y., & Mu, H. (2013). Long-term performance of enhanced biological phosphorus removal with increasing concentrations of silver nanoparticles and ions. RSC Advances, 3(25), 9835–9842.
CAS
Article
Google Scholar
Chen, J., Tang, Y. Q., Li, Y., Nie, Y., Hou, L., Li, X. Q., et al. (2014). Impacts of different nanoparticles on functional bacterial community in activated sludge. Chemosphere, 104, 141–148.
CAS
Article
Google Scholar
Chen, Y., Hong, C., Xiong, Z., & Hui, M. (2012a). The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms. Journal of Hazardous Materials, 239-240(18), 88–94.
CAS
Article
Google Scholar
Chen, Y., Su, Y., Zheng, X., Chen, H., & Yang, H. (2012b). Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Research, 46(14), 4379–4386.
CAS
Article
Google Scholar
Chen, Y. G., Wang, D. B., Zhu, X. Y., Zheng, X., & Feng, L. Y. (2012c). Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environmental Science and Technology, 46(22), 12452–12458.
CAS
Article
Google Scholar
Choi, O., Clevenger, T. E., Deng, B., Surampalli, R. Y., Ross Jr., L., & Hu, Z. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research, 43(7), 1879–1886.
CAS
Article
Google Scholar
Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42(12), 4583–4588.
CAS
Article
Google Scholar
Choi, O., & Hu, Z. (2009). Role of reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles. Journal of Environmental Engineering, 135(12), 1365–1370.
CAS
Article
Google Scholar
Dasari, T. P., Pathakoti, K., & Hwang, H.-M. (2013). Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. Journal of Environmental Sciences, 25(5), 882–888.
CAS
Article
Google Scholar
De Clippeleir, H., Defoirdt, T., Vanhaecke, L., Vlaeminck, S., Carballa, M., Verstraete, W., et al. (2011). Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied Microbiology and Biotechnology, 90(4), 1511–1519.
CAS
Article
Google Scholar
Dimkpa, C. O., Calder, A., Britt, D. W., McLean, J. E., & Anderson, A. J. (2011a). Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environmental Pollution, 159(7), 1749–1756.
CAS
Article
Google Scholar
Dimkpa, C. O., Calder, A., Gajjar, P., Merugu, S., Huang, W. J., Britt, D. W., et al. (2011b). Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. Journal of Hazardous Materials, 188(1–3), 428–435.
CAS
Article
Google Scholar
Everett, W. N., Chern, C., Sun, D., McMahon, R. E., Zhang, X., Chen, W. J., et al. (2014). Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates. Toxicology Letters, 225(1), 177–184.
CAS
Article
Google Scholar
Eduok, S., Ferguson, R., Jefferson, B., Villa, R., & Coulon, F. (2017). Aged-engineered nanoparticles effect on sludge anaerobic digestion performance and associated microbial communities. Science of the Total Environment, 609, 232–241.
CAS
Article
Google Scholar
Eduok, S., Hendry, C., Ferguson, R., Martin, B., Villa, R., Jefferson, B., et al. (2015). Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microbiology Ecology, 91(7), fiv082.
Article
CAS
Google Scholar
Eduok, S., Martin, B., Villa, R., Nocker, A., Jefferson, B., & Coulon, F. (2013). Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: current status and challenges. Ecotoxicology and Environmental Safety, 95(1), 1–9.
CAS
Article
Google Scholar
Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez, P. J. (2007). Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environmental Science and Technology, 41(7), 2636–2642.
CAS
Article
Google Scholar
Fang, X., Yu, R., Li, B., Somasundaran, P., & Chandran, K. (2010). Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. Journal of Colloid and Interface Science, 348(2), 329–334.
CAS
Article
Google Scholar
García-Contreras, R., Nuñez-López, L., Jasso-Chávez, R., Kwan, B. W., Belmont, J. A., Rangel-Vega, A., et al. (2015). Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. The ISME Journal, 9(1), 115–125.
Article
CAS
Google Scholar
Gartiser, S., Flach, F., Nickel, C., Stintz, M., Damme, S., Schaeffer, A., et al. (2014). Behavior of nanoscale titanium dioxide in laboratory wastewater treatment plants according to OECD 303 A. Chemosphere, 104, 197–204.
CAS
Article
Google Scholar
Gomez-Rivera, F., Field, J. A., Brown, D., & Sierra-Alvarez, R. (2012). Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment. Bioresource Technology, 108, 300–304.
CAS
Article
Google Scholar
Grady, C. P. L., et al. (2011). Biological wastewater treatment. Boca Raton: CRC Press.
Google Scholar
Gu, L., Li, Q., Quan, X., Cen, Y., & Jiang, X. (2014). Comparison of nanosilver removal by flocculent and granular sludge and short- and long-term inhibition impacts. Water Research, 58(7), 62–70.
CAS
Article
Google Scholar
Gunawan, C., Teoh, W. Y., Marquis, C. P., & Amal, R. (2011). Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano, 5(9), 7214–7225.
CAS
Article
Google Scholar
Hahn, M. W., & O'Melia, C. R. (2004). Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environmental Science and Technology, 38(1), 210–220.
CAS
Article
Google Scholar
Hai, R., Wang, Y., Wang, X., Du, Z., & Li, Y. (2014). Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge. PLoS One, 9(9), e107345–e107345.
Article
CAS
Google Scholar
Hancock, D. E., Indest, K. J., Gust, K. A., & Kennedy, A. J. (2012). Effects of C60 on the Salmonella typhimurium TA100 transcriptome expression: Insights into C60-mediated growth inhibition and mutagenicity. Environmental Toxicology and Chemistry, 31(7), 1438–1444.
CAS
Article
Google Scholar
He, Q., Gao, S., Zhang, S., Zhang, W., & Wang, H. (2017). Chronic responses of aerobic granules to zinc oxide nanoparticles in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Bioresource Technology, 238, 95–101.
CAS
Article
Google Scholar
Hessler, C. M., Wu, M.-Y., Xue, Z., Choi, H., & Seo, Y. (2012). The influence of capsular extracellular polymeric substances on the interaction between TiO2 nanoparticles and planktonic bacteria. Water Research, 46(15), 4687–4696.
CAS
Article
Google Scholar
Hooper, A. B., Vannelli, T., Bergmann, D. J., & Arciero, D. M. (1997). Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek, 71(1), 59–67.
CAS
Article
Google Scholar
Hou, L. L., Li, K. Y., Ding, Y. Z., Li, Y., Chen, J., Wu, X. L., et al. (2012). Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere, 87(3), 248–252.
CAS
Article
Google Scholar
Hou, L. L., Xia, J., Li, K. Y., Chen, J., Wu, X. L., & Li, X. Q. (2013). Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4+-N reduction. Water Science and Technology, 67(2), 254–260.
CAS
Article
Google Scholar
Huang, F., Ge, L., Zhang, B., Wang, Y., Tian, H., Zhao, L., et al. (2014). A fullerene colloidal suspension stimulates the growth and denitrification ability of wastewater treatment sludge-derived bacteria. Chemosphere, 108, 411–417.
CAS
Article
Google Scholar
Jenkins, D., Richard, M. G., & Daigger, G. (1993). Manual of the control of activated sludge bulking and foaming (2ed.). Michigan: Lewis Publisher.
Google Scholar
Jiang, C., Liu, Y., Chen, Z., Megharaj, M., & Naidu, R. (2013). Impact of iron-based nanoparticles on microbial denitrification by Paracoccus sp. strain YF1. Aquatic Toxicology, 142-143, 329–335.
CAS
Article
Google Scholar
Jiang, W. (2011). Bacterial toxicity of oxide nanoparticles and their effects on bacterial surface biomolecules. Dissertation, University of Massachusetts Amherst.
Joshi, N., Ngwenya, B. T., & French, C. E. (2012). Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. Journal of Hazardous Materials, 241–242, 363–370.
Article
CAS
Google Scholar
Kaegi, R., Voegelin, A., Ort, C., Sinnet, B., Thalmann, B., Krismer, J., et al. (2013). Fate and transformation of silver nanoparticles in urban wastewater systems. Water Research, 47(12), 3866–3877.
CAS
Article
Google Scholar
Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., et al. (2011). Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environmental Science and Technology, 45(9), 3902–3908.
CAS
Article
Google Scholar
Kakinen, A., Ding, F., Chen, P. Y., Mortimer, M., Kahru, A., & Ke, P. C. (2013). Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. Nanotechnology, 24(34), 311–320.
Article
CAS
Google Scholar
Kallay, N., & Žalac, S. (2002). Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. Journal of Colloid and Interface Science, 253(1), 70–76.
CAS
Article
Google Scholar
Keilin, D., & Hartree, E. F. (1939). Cytochrome and cytochrome oxidase. Proceedings of the Royal Society of London, 127(847), 167–191.
CAS
Article
Google Scholar
Keller, A. A., Mcferran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6), 1692.
Article
Google Scholar
Kent, R. D., Oser, J. G., & Vikesland, P. J. (2014). Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environmental Science and Technology, 48(15), 8564–8572.
CAS
Article
Google Scholar
Kim, B. J., Park, C. S., Murayama, M., & Hochella, M. F. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmental Science and Technology, 44(19), 7509–7514.
CAS
Article
Google Scholar
Kostigen Mumper, C., Ostermeyer, A. K., Semprini, L., & Radniecki, T. S. (2013). Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Chemosphere, 93(10), 2493–2498.
CAS
Article
Google Scholar
Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology and Medicine, 51(10), 1872–1881.
CAS
Article
Google Scholar
Kunkalekar, R. K., Prabhu, M. S., Naik, M. M., & Salker, A. V. (2014). Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria. Colloids and Surfaces B: Biointerfaces, 113, 429–434.
CAS
Article
Google Scholar
Li, A.-J., Hou, B.-1., & Li, M.-X. (2015). Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones. Bioresource Technology, 196, 550–558.
CAS
Article
Google Scholar
Li, D., Cui, F., Zhao, Z., Liu, D., Xu, Y., Li, H., et al. (2014). The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge. Biodegradation, 25(2), 167–177.
Article
CAS
Google Scholar
Li, M., Zhu, L., & Lin, D. (2011). Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environmental Science and Technology, 45(5), 1977–1983.
CAS
Article
Google Scholar
Li, Z., Wang, X., Ma, B., Wang, S., Zheng, D., She, Z., et al. (2017). Long-term impacts of titanium dioxide nanoparticles (TiO2 NPs) on performance and microbial community of activated sludge. Bioresource Technology, 238, 361–368.
CAS
Article
Google Scholar
Liang, Z., Das, A., & Hu, Z. (2010). Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Research, 44(18), 5432–5438.
CAS
Article
Google Scholar
Liu, G., Wang, D., Wang, J., & Mendoza, C. (2011). Effect of ZnO particles on activated sludge: role of particle dissolution. Science of the Total Environment, 409(14), 2852–2857.
CAS
Article
Google Scholar
Liu, S. B., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., et al. (2009). Sharper and faster “Nano Darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano, 3(12), 3891–3902.
CAS
Article
Google Scholar
Liu, Y., & Tay, J.-H. (2004). State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 22(7), 533–563.
CAS
Article
Google Scholar
Lombi, E., Donner, E., Taheri, S., Tavakkoli, E., Jamting, A. K., McClure, S., et al. (2013). Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environmental Pollution, 176, 193–197.
CAS
Article
Google Scholar
Lombi, E., Donner, E., Tavakkoli, E., Turney, T. W., Naidu, R., Miller, B. W., et al. (2012). Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environmental Science and Technology, 46(16), 9089–9096.
CAS
Article
Google Scholar
Luna-delRisco, M., Orupold, K., & Dubourguier, H. C. (2011). Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. Journal of Hazardous Materials, 189(1–2), 603–608.
Ma, J., Quan, X., Si, X., & Wu, Y. (2013). Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms. Bioresource Technology, 149, 346–352.
CAS
Article
Google Scholar
Ma, R., Levard, C., Judy, J. D., Unrine, J. M., Durenkamp, M., Martin, B., et al. (2014). Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmental Science and Technology, 48(1), 104–112.
CAS
Article
Google Scholar
Ma, Y., Metch, J. W., Vejerano, E. P., Miller, I. J., Leon, E. C., Marr, L. C., et al. (2015). Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Research, 68, 87–97.
CAS
Article
Google Scholar
Meddows, T. R., Savory, A. P., Grove, J. I., Moore, T., & Lloyd, R. G. (2005). RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Molecular Microbiology, 57(1), 97–110.
CAS
Article
Google Scholar
Mu, H., & Chen, Y. (2011). Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Research, 45(17), 5612–5620.
CAS
Article
Google Scholar
Mu, H., Chen, Y., & Xiao, N. (2011). Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresource Technology, 102(22), 10305–10311.
CAS
Article
Google Scholar
Mu, H., Zheng, X., Chen, Y. G., Chen, H., & Liu, K. (2012). Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment. Environmental Science and Technology, 46(11), 5997–6003.
CAS
Article
Google Scholar
Mukherjee, B., & Weaver, J. W. (2010). Aggregation and charge behavior of metallic and nonmetallic nanoparticles in the presence of competing similarly-charged inorganic ions. Environmental Science and Technology, 44(9), 3332–3338.
CAS
Article
Google Scholar
Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.
CAS
Article
Google Scholar
Nghiem, Y., Cabrera, M., Cupples, C. G., & Miller, J. H. (1988). The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions. Proceedings of the National Academy of Sciences, 85(8), 2709–2713.
CAS
Article
Google Scholar
Nielsen, A. H., Vollertsen, J., Jensen, H. S., Madsen, H. I., & Hvitved-Jacobsen, T. (2008). Aerobic and anaerobic transformations of sulfide in a sewer system: field study and model simulations. Water Environment Research, 80(1), 16–25.
CAS
Article
Google Scholar
Ostermeyer, A. K., Kostigen Mumuper, C., Semprini, L., & Radniecki, T. (2013). Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environmental Science and Technology, 47(24), 14403–14410.
CAS
Article
Google Scholar
Otero-González, L., Field, J. A., & Sierra-Alvarez, R. (2014). Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. Journal of Environmental Management, 135, 110–117.
Article
CAS
Google Scholar
Pavagadhi, S., Sathishkumar, M., & Balasubramanian, R. (2014). Uptake of Ag and TiO2 nanoparticles by zebrafish embryos in the presence of other contaminants in the aquatic environment. Water Research, 55, 280–291.
CAS
Article
Google Scholar
Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9), 1109.
Article
Google Scholar
Puay, N. Q., Qiu, G., & Ting, Y. P. (2015). Effect of ZnO nanoparticles on biological wastewater treatment in a sequencing batch reactor (SBR). Journal of Cleaner Production, 88, 139–145.
CAS
Article
Google Scholar
Qiu, T. A., Gallagher, M. J., Hudsonsmith, N. V., Wu, J., Krause, M. O. P., Fortner, J. D., et al. (2016). Research highlights: unveiling the mechanisms underlying nanoparticle-induced ROS generation and oxidative stress. Environmental Science Nano, 3(5), 940–945.
CAS
Article
Google Scholar
Radniecki, T. S., Stankus, D. P., Neigh, A., Nason, J. A., & Semprini, L. (2011). Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere, 85(1), 43–49.
CAS
Article
Google Scholar
Rathnayake, S., Unrine, J. M., Judy, J., Miller, A. F., Rao, W., & Bertsch, P. M. (2014). Multitechnique investigation of the pH dependence of phosphate induced transformations of ZnO nanoparticles. Environmental Science and Technology, 48(9), 4757–4764.
CAS
Article
Google Scholar
Reinsch, B. C., Levard, C., Li, Z., Ma, R., Wise, A., Gregory, K. B., et al. (2012). Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environmental Science and Technology, 46(13), 6992–7000.
CAS
Article
Google Scholar
Reyes, V. C., Opot, S. O., & Mahendra, S. (2015). Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles. Environmental Toxicology and Chemistry, 34(4), 887–897.
CAS
Article
Google Scholar
Sakarya, K., Akyol, Ç., & Demirel, B. (2015). The effect of short-term exposure of engineered nanoparticles on methane production during mesophilic anaerobic digestion of primary sludge. Water Air and Soil Pollution, 226(4), 1–9.
CAS
Article
Google Scholar
Schaumann, G. E., Philippe, A., Bundschuh, M., Metreveli, G., Klitzke, S., Rakcheev, D., et al. (2015). Understanding the fate and biological effects of Ag and TiO2 nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Science of the Total Environment, 535, 03–19.
CAS
Article
Google Scholar
Sheng, Z., Van Nostrand, J. D., Zhou, J., & Liu, Y. (2015). The effects of silver nanoparticles on intact wastewater biofilms. Frontiers in Microbiology, 6, 680.
Google Scholar
Sinha, R., Karan, R., Sinha, A., & Khare, S. K. (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresource Technology, 102(2), 1516–1520.
CAS
Article
Google Scholar
Sun, T. Y., Gottschalk, F., Hungerbuhler, K., & Nowack, B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Pollution, 185, 69–76.
CAS
Article
Google Scholar
Sun, X., Sheng, Z., & Liu, Y. (2013). Effects of silver nanoparticles on microbial community structure in activated sludge. Science of the Total Environment, 443, 828–835.
CAS
Article
Google Scholar
Tong, T., Shereef, A., Wu, J., Binh, C. T., Kelly, J. J., Gaillard, J. F., et al. (2013a). Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environmental Science and Technology, 47(21), 12486–12495.
CAS
Article
Google Scholar
Tong, T., Wilke, C. M., Wu, J., Binh, C. T. T., Kelly, J. J., Gaillard, J.-F., et al. (2015). Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environmental Science and Technology, 49(13), 8113–8123.
CAS
Article
Google Scholar
Tong, T. Z., Binh, C. T. T., Kelly, J. J., Gaillard, J. F., & Gray, K. A. (2013b). Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: Effects of environmental factors. Water Research, 47(7), 2352–2362.
CAS
Article
Google Scholar
Tong, T. Z., Fang, K. Q., Thomas, S. A., Kelly, J. J., Gray, K. A., & Gaillard, J. F. (2014). Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium. Environmental Science and Technology, 48(14), 7924–7932.
CAS
Article
Google Scholar
Tyagi, I., Gupta, V. K., Sadegh, H., Ghoshekandi, R. S., & Makhlouf, A. S. H. (2015). Nanoparticles as adsorbent: a positive approach for removal of noxious metal ions: a review. Science, Technology and Development, 34(3), 195–214.
Article
Google Scholar
Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Jr., M. F., Rejeski, D., et al. (2015). Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780.
CAS
Article
Google Scholar
Wang, C., Bobba, A. D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L.-P., et al. (2012b). Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size. Environmental Science and Technology, 46(13), 7151–7158.
CAS
Article
Google Scholar
Wang, S., Gao, M., She, Z., Zheng, D., Jin, C., Guo, L., et al. (2016). Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor. Bioresource Technology, 216, 428–436.
CAS
Article
Google Scholar
Wang, S. T., Li, S. P., Wang, W. Q., & You, H. (2015). The impact of zinc oxide nanoparticles on nitrification and the bacterial community in activated sludge in an SBR. RSC Advances, 5(82), 67335–67342.
CAS
Article
Google Scholar
Wang, Y., Westerhoff, P., & Hristovski, K. D. (2012a). Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. Journal of Hazardous Materials, 201-202, 16–22.
CAS
Article
Google Scholar
Wang, Z., Li, J., Zhao, J., & Xing, B. (2011). Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environmental Science and Technology, 45(14), 6032–6040.
CAS
Article
Google Scholar
Westerhoff, P., Song, G., Hristovski, K., & Kiser, M. A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. Journal of Environmental Monitoring, 13(5), 1195–1203.
CAS
Article
Google Scholar
Westerhoff, P. K., Kiser, A., & Hristovski, K. (2013). Nanomaterial removal and transformation during biological wastewater treatment. Environmental Engineering Science, 30(3), 109–117.
CAS
Article
Google Scholar
Whittaker, M., Bergmann, D., Arciero, D., & Hooper, A. B. (2000). Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1459(2), 346–355.
CAS
Article
Google Scholar
Wiesmann, U. (1994). Biological nitrogen removal from wastewater. Advances in Biochemical Engineering/Biotechnology, 51(51), 113–154.
CAS
Article
Google Scholar
Wu, J., Lu, H., Zhu, G., Chen, L., Chang, Y., & Yu, R. (2017). Regulation of membrane fixation and energy production/conversion for adaptation and recovery of ZnO nanoparticle impacted Nitrosomonas europaea. Applied Microbiology and Biotechnology, 101(7), 2953–2965.
CAS
Article
Google Scholar
Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12(8), 4271–4275.
CAS
Article
Google Scholar
Yang, W., Shen, C., Ji, Q., An, H., Wang, J., Liu, Q., et al. (2009). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 20(8), 085102.
Article
CAS
Google Scholar
Yang, Y., Chen, Q., Wall, J. D., & Hu, Z. Q. (2012a). Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Research, 46(4), 1176–1184.
CAS
Article
Google Scholar
Yang, Y., Li, M., Michels, C., Moreira-Soares, H., & Alvarez, P. J. J. (2014a). Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge. Environmental Toxicology and Chemistry, 33(10), 2234–2239.
CAS
Article
Google Scholar
Yang, Y., Quensen, J., Mathieu, J., Wang, Q., Wang, J., Li, M., et al. (2014b). Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Research, 48, 317–325.
CAS
Article
Google Scholar
Yang, Y., Wang, J., Xiu, Z., & Alvarez, P. J. (2013). Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environmental Toxicology and Chemistry, 32(7), 1488–1494.
CAS
Google Scholar
Yang, Y., Wang, J., Zhu, H., Colvin, V. L., & Alvarez, P. J. (2012b). Relative susceptibility and transcriptional response of nitrogen cycling bacteria to quantum dots. Environmental Science and Technology, 46(6), 3433–3441.
CAS
Article
Google Scholar
Yu, R., Fang, X., Somasundaran, P., & Chandran, K. (2015). Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea. Chemosphere, 128, 207–215.
CAS
Article
Google Scholar
Yu, R., Wu, J., Liu, M., Chen, L., Zhu, G., & Lu, H. (2016a). Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures. Environmental Science and Pollution Research, 23(13), 13023–13034.
CAS
Article
Google Scholar
Yu, R., Wu, J., Liu, M., Zhu, G., Chen, L., Chang, Y., et al. (2016b). Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea. Chemosphere, 153, 187–197.
CAS
Article
Google Scholar
Zhang, C., Liang, Z., & Hu, Z. (2013). Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Research, 50, 350–358.
Article
CAS
Google Scholar
Zhang, L., Jiang, Y., Ding, Y., Daskalakis, N., Jeuken, L., Povey, M., et al. (2010). Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research, 12(5), 1625–1636.
CAS
Article
Google Scholar
Zhang, Y., Chen, Y., Westerhoff, P., & Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43(17), 4249–4257.
CAS
Article
Google Scholar
Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., & Crittenden, J. C. (2008). Stability of commercial metal oxide nanoparticles in water. Water Research, 42(8), 2204–2212.
CAS
Article
Google Scholar
Zhao, J., Wang, Z., Dai, Y., & Xing, B. (2013). Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Research, 47(12), 4169–4178.
CAS
Article
Google Scholar
Zheng, X., Chen, Y., & Wu, R. (2011a). Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environmental Science and Technology, 45(17), 7284–7290.
CAS
Article
Google Scholar
Zheng, X., Su, Y., & Chen, Y. (2012). Acute and chronic responses of activated sludge viability and performance to silica nanoparticles. Environmental Science and Technology, 46(13), 7182–7188.
CAS
Article
Google Scholar
Zheng, X., Su, Y., Chen, Y., Wan, R., Li, M., Huang, H., et al. (2016). Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle. Scientific Reports, 6, 27748.
CAS
Article
Google Scholar
Zheng, X., Su, Y., Chen, Y., Wan, R., Liu, K., Li, M., et al. (2014). Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environmental Science and Technology, 48(23), 13800–13807.
CAS
Article
Google Scholar
Zheng, X. O., Wu, R., & Chen, Y. G. (2011b). Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environmental Science and Technology, 45(7), 2826–2832.
CAS
Article
Google Scholar
Zhou, X. H., Huang, B. C., Zhou, T., Liu, Y. C., & Shi, H. C. (2015). Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. Chemosphere, 119, 568–576.
CAS
Article
Google Scholar