Advertisement

Fates and Impacts of Nanomaterial Contaminants in Biological Wastewater Treatment System: a Review

  • Junkang Wu
  • Guangcan Zhu
  • Ran YuEmail author
Article

Abstract

Nowadays, engineered nanoparticles (NPs) have been widely employed in research, medical, and industrial fields due to their nanoscale-induced unique physicochemical properties. The increasing application of diverse NPs would inevitably cause their release into municipal wastewater treatment plants (WWTPs) and pose potential toxicities to biological treatment systems. The fates and behaviors of NPs and their biological toxicity effects in the WWTPs were extensively reviewed. The potential nanotoxicity mechanisms were discussed at physiological and transcriptional levels and the factors to impact NP performances in WWTPs were explicated. Finally, the highly expected but yet solved difficulties such as toxicity standardization for various NPs in WWTPs, NP detection techniques, potential bio- or abiotic markers for nanotoxicity measurement, and nanotoxicity attenuation strategies are proposed. The critical insights of NP impacts on biological wastewater treatment systems provide fundamental and theoretical supports for NP risk assessments and emergency regulation in WWTPs in the future.

Keywords

Nanoparticle Fate Impact Biological wastewater treatment Toxicity 

Notes

Acknowledgements

This study was supported by National Natural Science Foundation of China (No. 51678134 and No.51208092), Natural Science Foundation of Jiangsu Province of China (BK20171154), the Fundamental Research Funds for the Central Universities, Innovative Graduate Student Project of Jiangsu Province (KYLX16_0282), and Scientific Research Foundation of Graduate School of Southeast University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Alito, C. L., & Gunsch, C. K. (2014). Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors. Environmental Science and Technology, 48(2), 970–976.CrossRefGoogle Scholar
  2. Ansari, M. A., Khan, H. M., Khan, A. A., Cameotra, S. S., Saquib, Q., & Musarrat, J. (2014). Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of Applied Microbiology, 116(4), 772–783.CrossRefGoogle Scholar
  3. Arnaout, C. L., & Gunsch, C. K. (2012). Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea. Environmental Science and Technology, 46(10), 5387–5395.CrossRefGoogle Scholar
  4. Barnard, J. L. (1975). Biological nutrient removal without the addition of chemicals. Water Research, 9(5–6), 485–490.CrossRefGoogle Scholar
  5. Barton, L. E., Auffan, M., Bertrand, M., Barakat, M., Santaella, C., Masion, A., et al. (2014). Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor. Environmental Science and Technology, 48(13), 7289–7296.CrossRefGoogle Scholar
  6. Beddow, J., Stolpe, B., Cole, P., Lead, J. R., Sapp, M., Lyons, B. P., et al. (2014). Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environmental Microbiology Reports, 6(5), 448–458.CrossRefGoogle Scholar
  7. Bera, R. K., Mandal, S. M., & Raj, C. R. (2014). Antimicrobial activity of fluorescent Ag nanoparticles. Letters in Applied Microbiology, 58(6), 520–526.CrossRefGoogle Scholar
  8. Brar, S. K., Verma, M., Tyagi, R. D., & Surampalli, R. Y. (2010). Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Management, 30(3), 504–520.CrossRefGoogle Scholar
  9. Chaúque, E. F. C., Zvimba, J. N., Ngila, J. C., & Musee, N. (2014). Stability studies of commercial ZnO engineered nanoparticles in domestic wastewater. Physics and Chemistry of the Earth Parts A/b/c, 67–69(12), 140–144.CrossRefGoogle Scholar
  10. Chambers, B. A., Afrooz, A. R., Bae, S., Aich, N., Katz, L., Saleh, N. B., et al. (2014). Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environmental Science and Technology, 48(1), 761–769.CrossRefGoogle Scholar
  11. Chen, H., Li, X., Chen, Y., Liu, Y., Zhang, H., & Xue, G. (2015). Performance of wastewater biological phosphorus removal under long-term exposure to CuNPs: adapting toxicity via microbial community structure adjustment. RSC Advances, 5(75), 61094–61102.CrossRefGoogle Scholar
  12. Chen, H., Zheng, X., Chen, Y., & Mu, H. (2013). Long-term performance of enhanced biological phosphorus removal with increasing concentrations of silver nanoparticles and ions. RSC Advances, 3(25), 9835–9842.CrossRefGoogle Scholar
  13. Chen, J., Tang, Y. Q., Li, Y., Nie, Y., Hou, L., Li, X. Q., et al. (2014). Impacts of different nanoparticles on functional bacterial community in activated sludge. Chemosphere, 104, 141–148.CrossRefGoogle Scholar
  14. Chen, Y., Hong, C., Xiong, Z., & Hui, M. (2012a). The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms. Journal of Hazardous Materials, 239-240(18), 88–94.CrossRefGoogle Scholar
  15. Chen, Y., Su, Y., Zheng, X., Chen, H., & Yang, H. (2012b). Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Research, 46(14), 4379–4386.CrossRefGoogle Scholar
  16. Chen, Y. G., Wang, D. B., Zhu, X. Y., Zheng, X., & Feng, L. Y. (2012c). Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environmental Science and Technology, 46(22), 12452–12458.CrossRefGoogle Scholar
  17. Choi, O., Clevenger, T. E., Deng, B., Surampalli, R. Y., Ross Jr., L., & Hu, Z. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research, 43(7), 1879–1886.CrossRefGoogle Scholar
  18. Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42(12), 4583–4588.CrossRefGoogle Scholar
  19. Choi, O., & Hu, Z. (2009). Role of reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles. Journal of Environmental Engineering, 135(12), 1365–1370.CrossRefGoogle Scholar
  20. Dasari, T. P., Pathakoti, K., & Hwang, H.-M. (2013). Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. Journal of Environmental Sciences, 25(5), 882–888.CrossRefGoogle Scholar
  21. De Clippeleir, H., Defoirdt, T., Vanhaecke, L., Vlaeminck, S., Carballa, M., Verstraete, W., et al. (2011). Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied Microbiology and Biotechnology, 90(4), 1511–1519.CrossRefGoogle Scholar
  22. Dimkpa, C. O., Calder, A., Britt, D. W., McLean, J. E., & Anderson, A. J. (2011a). Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environmental Pollution, 159(7), 1749–1756.CrossRefGoogle Scholar
  23. Dimkpa, C. O., Calder, A., Gajjar, P., Merugu, S., Huang, W. J., Britt, D. W., et al. (2011b). Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. Journal of Hazardous Materials, 188(1–3), 428–435.CrossRefGoogle Scholar
  24. Everett, W. N., Chern, C., Sun, D., McMahon, R. E., Zhang, X., Chen, W. J., et al. (2014). Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates. Toxicology Letters, 225(1), 177–184.CrossRefGoogle Scholar
  25. Eduok, S., Ferguson, R., Jefferson, B., Villa, R., & Coulon, F. (2017). Aged-engineered nanoparticles effect on sludge anaerobic digestion performance and associated microbial communities. Science of the Total Environment, 609, 232–241.CrossRefGoogle Scholar
  26. Eduok, S., Hendry, C., Ferguson, R., Martin, B., Villa, R., Jefferson, B., et al. (2015). Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microbiology Ecology, 91(7), fiv082.CrossRefGoogle Scholar
  27. Eduok, S., Martin, B., Villa, R., Nocker, A., Jefferson, B., & Coulon, F. (2013). Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: current status and challenges. Ecotoxicology and Environmental Safety, 95(1), 1–9.CrossRefGoogle Scholar
  28. Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez, P. J. (2007). Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environmental Science and Technology, 41(7), 2636–2642.CrossRefGoogle Scholar
  29. Fang, X., Yu, R., Li, B., Somasundaran, P., & Chandran, K. (2010). Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. Journal of Colloid and Interface Science, 348(2), 329–334.CrossRefGoogle Scholar
  30. García-Contreras, R., Nuñez-López, L., Jasso-Chávez, R., Kwan, B. W., Belmont, J. A., Rangel-Vega, A., et al. (2015). Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. The ISME Journal, 9(1), 115–125.CrossRefGoogle Scholar
  31. Gartiser, S., Flach, F., Nickel, C., Stintz, M., Damme, S., Schaeffer, A., et al. (2014). Behavior of nanoscale titanium dioxide in laboratory wastewater treatment plants according to OECD 303 A. Chemosphere, 104, 197–204.CrossRefGoogle Scholar
  32. Gomez-Rivera, F., Field, J. A., Brown, D., & Sierra-Alvarez, R. (2012). Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment. Bioresource Technology, 108, 300–304.CrossRefGoogle Scholar
  33. Grady, C. P. L., et al. (2011). Biological wastewater treatment. Boca Raton: CRC Press.Google Scholar
  34. Gu, L., Li, Q., Quan, X., Cen, Y., & Jiang, X. (2014). Comparison of nanosilver removal by flocculent and granular sludge and short- and long-term inhibition impacts. Water Research, 58(7), 62–70.CrossRefGoogle Scholar
  35. Gunawan, C., Teoh, W. Y., Marquis, C. P., & Amal, R. (2011). Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano, 5(9), 7214–7225.CrossRefGoogle Scholar
  36. Hahn, M. W., & O'Melia, C. R. (2004). Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environmental Science and Technology, 38(1), 210–220.CrossRefGoogle Scholar
  37. Hai, R., Wang, Y., Wang, X., Du, Z., & Li, Y. (2014). Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge. PLoS One, 9(9), e107345–e107345.CrossRefGoogle Scholar
  38. Hancock, D. E., Indest, K. J., Gust, K. A., & Kennedy, A. J. (2012). Effects of C60 on the Salmonella typhimurium TA100 transcriptome expression: Insights into C60-mediated growth inhibition and mutagenicity. Environmental Toxicology and Chemistry, 31(7), 1438–1444.CrossRefGoogle Scholar
  39. He, Q., Gao, S., Zhang, S., Zhang, W., & Wang, H. (2017). Chronic responses of aerobic granules to zinc oxide nanoparticles in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Bioresource Technology, 238, 95–101.CrossRefGoogle Scholar
  40. Hessler, C. M., Wu, M.-Y., Xue, Z., Choi, H., & Seo, Y. (2012). The influence of capsular extracellular polymeric substances on the interaction between TiO2 nanoparticles and planktonic bacteria. Water Research, 46(15), 4687–4696.CrossRefGoogle Scholar
  41. Hooper, A. B., Vannelli, T., Bergmann, D. J., & Arciero, D. M. (1997). Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek, 71(1), 59–67.CrossRefGoogle Scholar
  42. Hou, L. L., Li, K. Y., Ding, Y. Z., Li, Y., Chen, J., Wu, X. L., et al. (2012). Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere, 87(3), 248–252.CrossRefGoogle Scholar
  43. Hou, L. L., Xia, J., Li, K. Y., Chen, J., Wu, X. L., & Li, X. Q. (2013). Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4+-N reduction. Water Science and Technology, 67(2), 254–260.CrossRefGoogle Scholar
  44. Huang, F., Ge, L., Zhang, B., Wang, Y., Tian, H., Zhao, L., et al. (2014). A fullerene colloidal suspension stimulates the growth and denitrification ability of wastewater treatment sludge-derived bacteria. Chemosphere, 108, 411–417.CrossRefGoogle Scholar
  45. Jenkins, D., Richard, M. G., & Daigger, G. (1993). Manual of the control of activated sludge bulking and foaming (2ed.). Michigan: Lewis Publisher.Google Scholar
  46. Jiang, C., Liu, Y., Chen, Z., Megharaj, M., & Naidu, R. (2013). Impact of iron-based nanoparticles on microbial denitrification by Paracoccus sp. strain YF1. Aquatic Toxicology, 142-143, 329–335.CrossRefGoogle Scholar
  47. Jiang, W. (2011). Bacterial toxicity of oxide nanoparticles and their effects on bacterial surface biomolecules. Dissertation, University of Massachusetts Amherst.Google Scholar
  48. Joshi, N., Ngwenya, B. T., & French, C. E. (2012). Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. Journal of Hazardous Materials, 241–242, 363–370.CrossRefGoogle Scholar
  49. Kaegi, R., Voegelin, A., Ort, C., Sinnet, B., Thalmann, B., Krismer, J., et al. (2013). Fate and transformation of silver nanoparticles in urban wastewater systems. Water Research, 47(12), 3866–3877.CrossRefGoogle Scholar
  50. Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., et al. (2011). Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environmental Science and Technology, 45(9), 3902–3908.CrossRefGoogle Scholar
  51. Kakinen, A., Ding, F., Chen, P. Y., Mortimer, M., Kahru, A., & Ke, P. C. (2013). Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. Nanotechnology, 24(34), 311–320.CrossRefGoogle Scholar
  52. Kallay, N., & Žalac, S. (2002). Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. Journal of Colloid and Interface Science, 253(1), 70–76.CrossRefGoogle Scholar
  53. Keilin, D., & Hartree, E. F. (1939). Cytochrome and cytochrome oxidase. Proceedings of the Royal Society of London, 127(847), 167–191.CrossRefGoogle Scholar
  54. Keller, A. A., Mcferran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6), 1692.CrossRefGoogle Scholar
  55. Kent, R. D., Oser, J. G., & Vikesland, P. J. (2014). Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environmental Science and Technology, 48(15), 8564–8572.CrossRefGoogle Scholar
  56. Kim, B. J., Park, C. S., Murayama, M., & Hochella, M. F. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmental Science and Technology, 44(19), 7509–7514.CrossRefGoogle Scholar
  57. Kostigen Mumper, C., Ostermeyer, A. K., Semprini, L., & Radniecki, T. S. (2013). Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Chemosphere, 93(10), 2493–2498.CrossRefGoogle Scholar
  58. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology and Medicine, 51(10), 1872–1881.CrossRefGoogle Scholar
  59. Kunkalekar, R. K., Prabhu, M. S., Naik, M. M., & Salker, A. V. (2014). Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria. Colloids and Surfaces B: Biointerfaces, 113, 429–434.CrossRefGoogle Scholar
  60. Li, A.-J., Hou, B.-1., & Li, M.-X. (2015). Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones. Bioresource Technology, 196, 550–558.CrossRefGoogle Scholar
  61. Li, D., Cui, F., Zhao, Z., Liu, D., Xu, Y., Li, H., et al. (2014). The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge. Biodegradation, 25(2), 167–177.CrossRefGoogle Scholar
  62. Li, M., Zhu, L., & Lin, D. (2011). Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environmental Science and Technology, 45(5), 1977–1983.CrossRefGoogle Scholar
  63. Li, Z., Wang, X., Ma, B., Wang, S., Zheng, D., She, Z., et al. (2017). Long-term impacts of titanium dioxide nanoparticles (TiO2 NPs) on performance and microbial community of activated sludge. Bioresource Technology, 238, 361–368.CrossRefGoogle Scholar
  64. Liang, Z., Das, A., & Hu, Z. (2010). Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Research, 44(18), 5432–5438.CrossRefGoogle Scholar
  65. Liu, G., Wang, D., Wang, J., & Mendoza, C. (2011). Effect of ZnO particles on activated sludge: role of particle dissolution. Science of the Total Environment, 409(14), 2852–2857.CrossRefGoogle Scholar
  66. Liu, S. B., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., et al. (2009). Sharper and faster “Nano Darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano, 3(12), 3891–3902.CrossRefGoogle Scholar
  67. Liu, Y., & Tay, J.-H. (2004). State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 22(7), 533–563.CrossRefGoogle Scholar
  68. Lombi, E., Donner, E., Taheri, S., Tavakkoli, E., Jamting, A. K., McClure, S., et al. (2013). Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environmental Pollution, 176, 193–197.CrossRefGoogle Scholar
  69. Lombi, E., Donner, E., Tavakkoli, E., Turney, T. W., Naidu, R., Miller, B. W., et al. (2012). Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environmental Science and Technology, 46(16), 9089–9096.CrossRefGoogle Scholar
  70. Luna-delRisco, M., Orupold, K., & Dubourguier, H. C. (2011). Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. Journal of Hazardous Materials, 189(1–2), 603–608.Google Scholar
  71. Ma, J., Quan, X., Si, X., & Wu, Y. (2013). Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms. Bioresource Technology, 149, 346–352.CrossRefGoogle Scholar
  72. Ma, R., Levard, C., Judy, J. D., Unrine, J. M., Durenkamp, M., Martin, B., et al. (2014). Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmental Science and Technology, 48(1), 104–112.CrossRefGoogle Scholar
  73. Ma, Y., Metch, J. W., Vejerano, E. P., Miller, I. J., Leon, E. C., Marr, L. C., et al. (2015). Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Research, 68, 87–97.CrossRefGoogle Scholar
  74. Meddows, T. R., Savory, A. P., Grove, J. I., Moore, T., & Lloyd, R. G. (2005). RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Molecular Microbiology, 57(1), 97–110.CrossRefGoogle Scholar
  75. Mu, H., & Chen, Y. (2011). Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Research, 45(17), 5612–5620.CrossRefGoogle Scholar
  76. Mu, H., Chen, Y., & Xiao, N. (2011). Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresource Technology, 102(22), 10305–10311.CrossRefGoogle Scholar
  77. Mu, H., Zheng, X., Chen, Y. G., Chen, H., & Liu, K. (2012). Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment. Environmental Science and Technology, 46(11), 5997–6003.CrossRefGoogle Scholar
  78. Mukherjee, B., & Weaver, J. W. (2010). Aggregation and charge behavior of metallic and nonmetallic nanoparticles in the presence of competing similarly-charged inorganic ions. Environmental Science and Technology, 44(9), 3332–3338.CrossRefGoogle Scholar
  79. Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.CrossRefGoogle Scholar
  80. Nghiem, Y., Cabrera, M., Cupples, C. G., & Miller, J. H. (1988). The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions. Proceedings of the National Academy of Sciences, 85(8), 2709–2713.CrossRefGoogle Scholar
  81. Nielsen, A. H., Vollertsen, J., Jensen, H. S., Madsen, H. I., & Hvitved-Jacobsen, T. (2008). Aerobic and anaerobic transformations of sulfide in a sewer system: field study and model simulations. Water Environment Research, 80(1), 16–25.CrossRefGoogle Scholar
  82. Ostermeyer, A. K., Kostigen Mumuper, C., Semprini, L., & Radniecki, T. (2013). Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environmental Science and Technology, 47(24), 14403–14410.CrossRefGoogle Scholar
  83. Otero-González, L., Field, J. A., & Sierra-Alvarez, R. (2014). Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. Journal of Environmental Management, 135, 110–117.CrossRefGoogle Scholar
  84. Pavagadhi, S., Sathishkumar, M., & Balasubramanian, R. (2014). Uptake of Ag and TiO2 nanoparticles by zebrafish embryos in the presence of other contaminants in the aquatic environment. Water Research, 55, 280–291.CrossRefGoogle Scholar
  85. Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9), 1109.CrossRefGoogle Scholar
  86. Puay, N. Q., Qiu, G., & Ting, Y. P. (2015). Effect of ZnO nanoparticles on biological wastewater treatment in a sequencing batch reactor (SBR). Journal of Cleaner Production, 88, 139–145.CrossRefGoogle Scholar
  87. Qiu, T. A., Gallagher, M. J., Hudsonsmith, N. V., Wu, J., Krause, M. O. P., Fortner, J. D., et al. (2016). Research highlights: unveiling the mechanisms underlying nanoparticle-induced ROS generation and oxidative stress. Environmental Science Nano, 3(5), 940–945.CrossRefGoogle Scholar
  88. Radniecki, T. S., Stankus, D. P., Neigh, A., Nason, J. A., & Semprini, L. (2011). Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere, 85(1), 43–49.CrossRefGoogle Scholar
  89. Rathnayake, S., Unrine, J. M., Judy, J., Miller, A. F., Rao, W., & Bertsch, P. M. (2014). Multitechnique investigation of the pH dependence of phosphate induced transformations of ZnO nanoparticles. Environmental Science and Technology, 48(9), 4757–4764.CrossRefGoogle Scholar
  90. Reinsch, B. C., Levard, C., Li, Z., Ma, R., Wise, A., Gregory, K. B., et al. (2012). Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environmental Science and Technology, 46(13), 6992–7000.CrossRefGoogle Scholar
  91. Reyes, V. C., Opot, S. O., & Mahendra, S. (2015). Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles. Environmental Toxicology and Chemistry, 34(4), 887–897.CrossRefGoogle Scholar
  92. Sakarya, K., Akyol, Ç., & Demirel, B. (2015). The effect of short-term exposure of engineered nanoparticles on methane production during mesophilic anaerobic digestion of primary sludge. Water Air and Soil Pollution, 226(4), 1–9.CrossRefGoogle Scholar
  93. Schaumann, G. E., Philippe, A., Bundschuh, M., Metreveli, G., Klitzke, S., Rakcheev, D., et al. (2015). Understanding the fate and biological effects of Ag and TiO2 nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Science of the Total Environment, 535, 03–19.CrossRefGoogle Scholar
  94. Sheng, Z., Van Nostrand, J. D., Zhou, J., & Liu, Y. (2015). The effects of silver nanoparticles on intact wastewater biofilms. Frontiers in Microbiology, 6, 680.Google Scholar
  95. Sinha, R., Karan, R., Sinha, A., & Khare, S. K. (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresource Technology, 102(2), 1516–1520.CrossRefGoogle Scholar
  96. Sun, T. Y., Gottschalk, F., Hungerbuhler, K., & Nowack, B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Pollution, 185, 69–76.CrossRefGoogle Scholar
  97. Sun, X., Sheng, Z., & Liu, Y. (2013). Effects of silver nanoparticles on microbial community structure in activated sludge. Science of the Total Environment, 443, 828–835.CrossRefGoogle Scholar
  98. Tong, T., Shereef, A., Wu, J., Binh, C. T., Kelly, J. J., Gaillard, J. F., et al. (2013a). Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environmental Science and Technology, 47(21), 12486–12495.CrossRefGoogle Scholar
  99. Tong, T., Wilke, C. M., Wu, J., Binh, C. T. T., Kelly, J. J., Gaillard, J.-F., et al. (2015). Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environmental Science and Technology, 49(13), 8113–8123.CrossRefGoogle Scholar
  100. Tong, T. Z., Binh, C. T. T., Kelly, J. J., Gaillard, J. F., & Gray, K. A. (2013b). Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: Effects of environmental factors. Water Research, 47(7), 2352–2362.CrossRefGoogle Scholar
  101. Tong, T. Z., Fang, K. Q., Thomas, S. A., Kelly, J. J., Gray, K. A., & Gaillard, J. F. (2014). Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium. Environmental Science and Technology, 48(14), 7924–7932.CrossRefGoogle Scholar
  102. Tyagi, I., Gupta, V. K., Sadegh, H., Ghoshekandi, R. S., & Makhlouf, A. S. H. (2015). Nanoparticles as adsorbent: a positive approach for removal of noxious metal ions: a review. Science, Technology and Development, 34(3), 195–214.CrossRefGoogle Scholar
  103. Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Jr., M. F., Rejeski, D., et al. (2015). Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780.CrossRefGoogle Scholar
  104. Wang, C., Bobba, A. D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L.-P., et al. (2012b). Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size. Environmental Science and Technology, 46(13), 7151–7158.CrossRefGoogle Scholar
  105. Wang, S., Gao, M., She, Z., Zheng, D., Jin, C., Guo, L., et al. (2016). Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor. Bioresource Technology, 216, 428–436.CrossRefGoogle Scholar
  106. Wang, S. T., Li, S. P., Wang, W. Q., & You, H. (2015). The impact of zinc oxide nanoparticles on nitrification and the bacterial community in activated sludge in an SBR. RSC Advances, 5(82), 67335–67342.CrossRefGoogle Scholar
  107. Wang, Y., Westerhoff, P., & Hristovski, K. D. (2012a). Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. Journal of Hazardous Materials, 201-202, 16–22.CrossRefGoogle Scholar
  108. Wang, Z., Li, J., Zhao, J., & Xing, B. (2011). Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environmental Science and Technology, 45(14), 6032–6040.CrossRefGoogle Scholar
  109. Westerhoff, P., Song, G., Hristovski, K., & Kiser, M. A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. Journal of Environmental Monitoring, 13(5), 1195–1203.CrossRefGoogle Scholar
  110. Westerhoff, P. K., Kiser, A., & Hristovski, K. (2013). Nanomaterial removal and transformation during biological wastewater treatment. Environmental Engineering Science, 30(3), 109–117.CrossRefGoogle Scholar
  111. Whittaker, M., Bergmann, D., Arciero, D., & Hooper, A. B. (2000). Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1459(2), 346–355.CrossRefGoogle Scholar
  112. Wiesmann, U. (1994). Biological nitrogen removal from wastewater. Advances in Biochemical Engineering/Biotechnology, 51(51), 113–154.CrossRefGoogle Scholar
  113. Wu, J., Lu, H., Zhu, G., Chen, L., Chang, Y., & Yu, R. (2017). Regulation of membrane fixation and energy production/conversion for adaptation and recovery of ZnO nanoparticle impacted Nitrosomonas europaea. Applied Microbiology and Biotechnology, 101(7), 2953–2965.CrossRefGoogle Scholar
  114. Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12(8), 4271–4275.CrossRefGoogle Scholar
  115. Yang, W., Shen, C., Ji, Q., An, H., Wang, J., Liu, Q., et al. (2009). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 20(8), 085102.CrossRefGoogle Scholar
  116. Yang, Y., Chen, Q., Wall, J. D., & Hu, Z. Q. (2012a). Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Research, 46(4), 1176–1184.CrossRefGoogle Scholar
  117. Yang, Y., Li, M., Michels, C., Moreira-Soares, H., & Alvarez, P. J. J. (2014a). Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge. Environmental Toxicology and Chemistry, 33(10), 2234–2239.CrossRefGoogle Scholar
  118. Yang, Y., Quensen, J., Mathieu, J., Wang, Q., Wang, J., Li, M., et al. (2014b). Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Research, 48, 317–325.CrossRefGoogle Scholar
  119. Yang, Y., Wang, J., Xiu, Z., & Alvarez, P. J. (2013). Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environmental Toxicology and Chemistry, 32(7), 1488–1494.Google Scholar
  120. Yang, Y., Wang, J., Zhu, H., Colvin, V. L., & Alvarez, P. J. (2012b). Relative susceptibility and transcriptional response of nitrogen cycling bacteria to quantum dots. Environmental Science and Technology, 46(6), 3433–3441.CrossRefGoogle Scholar
  121. Yu, R., Fang, X., Somasundaran, P., & Chandran, K. (2015). Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea. Chemosphere, 128, 207–215.CrossRefGoogle Scholar
  122. Yu, R., Wu, J., Liu, M., Chen, L., Zhu, G., & Lu, H. (2016a). Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures. Environmental Science and Pollution Research, 23(13), 13023–13034.CrossRefGoogle Scholar
  123. Yu, R., Wu, J., Liu, M., Zhu, G., Chen, L., Chang, Y., et al. (2016b). Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea. Chemosphere, 153, 187–197.CrossRefGoogle Scholar
  124. Zhang, C., Liang, Z., & Hu, Z. (2013). Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Research, 50, 350–358.CrossRefGoogle Scholar
  125. Zhang, L., Jiang, Y., Ding, Y., Daskalakis, N., Jeuken, L., Povey, M., et al. (2010). Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research, 12(5), 1625–1636.CrossRefGoogle Scholar
  126. Zhang, Y., Chen, Y., Westerhoff, P., & Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43(17), 4249–4257.CrossRefGoogle Scholar
  127. Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., & Crittenden, J. C. (2008). Stability of commercial metal oxide nanoparticles in water. Water Research, 42(8), 2204–2212.CrossRefGoogle Scholar
  128. Zhao, J., Wang, Z., Dai, Y., & Xing, B. (2013). Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Research, 47(12), 4169–4178.CrossRefGoogle Scholar
  129. Zheng, X., Chen, Y., & Wu, R. (2011a). Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environmental Science and Technology, 45(17), 7284–7290.CrossRefGoogle Scholar
  130. Zheng, X., Su, Y., & Chen, Y. (2012). Acute and chronic responses of activated sludge viability and performance to silica nanoparticles. Environmental Science and Technology, 46(13), 7182–7188.CrossRefGoogle Scholar
  131. Zheng, X., Su, Y., Chen, Y., Wan, R., Li, M., Huang, H., et al. (2016). Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle. Scientific Reports, 6, 27748.CrossRefGoogle Scholar
  132. Zheng, X., Su, Y., Chen, Y., Wan, R., Liu, K., Li, M., et al. (2014). Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environmental Science and Technology, 48(23), 13800–13807.CrossRefGoogle Scholar
  133. Zheng, X. O., Wu, R., & Chen, Y. G. (2011b). Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environmental Science and Technology, 45(7), 2826–2832.CrossRefGoogle Scholar
  134. Zhou, X. H., Huang, B. C., Zhou, T., Liu, Y. C., & Shi, H. C. (2015). Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. Chemosphere, 119, 568–576.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water EnvironmentSoutheast UniversityNanjingChina
  2. 2.Key Laboratory of Environmental Medicine Engineering, Ministry of EducationSoutheast UniversityNanjingChina

Personalised recommendations