Skip to main content

Are Nitric Acid (HNO3) Digestions Efficient in Isolating Microplastics from Juvenile Fish?

Abstract

A standard method for the detection and isolation of microplastics is required to adequately investigate plastic ingestion by juvenile fish. Dissections of juvenile fish guts require precise handling, which can affect the processing time if sample numbers are high. To investigate the efficacy of nitric acid (HNO3) in aiding the isolation of microplastics using whole fish, we digested juvenile glassfish, Ambassis dussumieri (Cuvier, 1828), at room temperature and at 80 °C. For a complete digestion, overnight incubation in 10 mL of 55% analytical-reagent (AR) HNO3 was sufficient for a whole fish of 1 g at room temperature. When coupled with elevated temperature, the digestion time is shortened to a few minutes and larger fish of 3 g can be digested in 30 min. Four of the five types of plastic survived the process, with nylon being the exception. This is a shortfall to the method; however, until a better method replaces it, we still value the use of HNO3 for its simple, inexpensive, swift and complete digestions of whole fish. Four fish species from two feeding guilds were digested using this method to validate its use. The number of plastic particles ingested did not differ between benthic and pelagic species and microplastic fibres comprised the majority of the plastic types found.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Avio, C. G., Gorbi, S., & Regoli, F. (2015). Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Marine Environmental Research, 111, 18–26.

    CAS  Article  Google Scholar 

  2. Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: sources and sinks. Environmental Science and Technology, 45, 9175–9179.

    CAS  Article  Google Scholar 

  3. Campbell, S. H., Williamson, P. R., & Hall, B. D. (2017). Microplastics in the gastrointestinal tracts of fish and the water from an urban prairie creek. FACETS, 2, 395–409.

    Article  Google Scholar 

  4. Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B., & Janssen, C. R. (2013). New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin, 70, 227–233.

    CAS  Article  Google Scholar 

  5. Cole, M., & Galloway, T. S. (2015). Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environmental Science and Technology, 49, 14625–14632.

    CAS  Article  Google Scholar 

  6. Cole, M., Webb, H., Lindeque, P. K., Fileman, E. S., Halsband, C., & Galloway, T. S. (2014). Isolation of microplastics in biota-rich seawater samples and marine organisms. Scientific Reports, 4, 1–8.

    Google Scholar 

  7. Collard, F., Gilbert, B., Eppe, G., Parmentier, E., & Das, K. (2015). Detection of anthropogenic particles in fish stomachs: an isolation method adapted to identification by Raman spectroscopy. Archives of Environmental Contamination and Toxicology, 69, 331–339.

    CAS  Article  Google Scholar 

  8. Davidson, K., & Dudas, S. E. (2016). Microplastic ingestion by wild and cultured Manila clams (Venerupis philippinarum). Archives of Environmental Contamination and Toxicology, 71, 147–156.

    CAS  Article  Google Scholar 

  9. Davison, P., & Asch, R. G. (2011). Plastic ingestion by mesopelagic fishes in the North Pacific subtropical gyre. Marine Ecology Progress Series, 432, 173–180.

    Article  Google Scholar 

  10. de Sá, L. C., Luís, L. G., & Guilhermino, L. (2015). Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environmental Pollution, 196, 359–362.

    Article  Google Scholar 

  11. Dehaut, A., Cassone, A.-L., Frère, L., Hermabessiere, L., Himber, C., Rinnert, E., Rivière, G., Lambert, C., Soudant, P., & Huvet, A. (2016). Microplastics in seafood: benchmark protocol for their extraction and characterization. Environmental Pollution, 215, 223–233.

    CAS  Article  Google Scholar 

  12. Desforges, J.-P. W., Galbraith, M., & Ross, P. S. (2015). Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology, 69, 320–330.

    CAS  Article  Google Scholar 

  13. Devriese, L. I., van der Meulen, M. D., Maes, T., Bekaert, K., Paul-Pont, I., Frère, L., Robbens, J., & Vethaak, A. D. (2015). Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Marine Pollution Bulletin, 98, 179–187.

    CAS  Article  Google Scholar 

  14. Foekema, E. M., De Gruijter, C., Mergia, M. T., van Franeker, J. A., Murk, A. J., & Koelmans, A. A. (2013). Plastic in North Sea fish. Environmental Science and Technology, 47, 8818–8824.

    CAS  Article  Google Scholar 

  15. Forbes, A.T., Demetriades, N.T. (2008). Estuaries of Durban, KwaZulu Natal, South Africa. Marine and Estuarine Research/ eThekwini Municipality (pp 1–224).

  16. Jovanović, B. (2017). Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integrated Environmental Assessment and Management, 13, 510–515.

    Article  Google Scholar 

  17. Karami, A., Golieskardi, A., Choo, C. K., Romano, N., Ho, Y. B., & Salamatinia, B. (2017). A high-performance protocol for extraction of microplastics in fish. Science of the Total Environment, 578, 485–494.

    CAS  Article  Google Scholar 

  18. Khan, F. R., Syberg, K., Shashoua, Y., & Bury, N. R. (2015). Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish (Danio rerio). Environmental Pollution, 206, 73–79.

    CAS  Article  Google Scholar 

  19. Lusher, A., McHugh, M., & Thompson, R. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 67, 94–99.

    CAS  Article  Google Scholar 

  20. Lusher, A., Weldon, N. A., Sobral, P., Cole, M. (2017). Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Analytical Methods, 9, 1346–1360.

  21. Markic, A., & Nicol, S. (2014). In a nutshell: microplastics and fisheries. SPC Fisheries Newsletter, 144, 27–29.

    Google Scholar 

  22. Mizraji, R., Ahrendt, C., Perez-Venegas, D., Vargas, J., Pulgar, J., Aldana, M., Ojeda, F. P., Duarte, C., & Galbán-Malagón, C. (2017). Is the feeding type related with the content of microplastics in intertidal fish gut? Marine Pollution Bulletin, 116, 498–500.

    CAS  Article  Google Scholar 

  23. Naidoo, T., Glassom, D., & Smit, A. J. (2015). Plastic pollution in five urban estuaries of KwaZulu-Natal, South Africa. Marine Pollution Bulletin, 101, 473–480.

    CAS  Article  Google Scholar 

  24. Naidoo, T., Glassom, D., Smit, A. J. (2016). Plastic ingestion by estuarine mullet, Mugil cephalus (L. 1758), in an urban harbour, KwaZulu-Natal, South Africa. African Journal of Marine Science, 38, 145–149.

  25. Nel, H. A., Hean, J. W., Noundou, X. S., & Froneman, P. W. (2017). Do microplastic loads reflect the population demographics along the southern African coastline? Marine Pollution Bulletin, 115, 115–119.

    CAS  Article  Google Scholar 

  26. Neves, D., Sobral, P., Ferreira, J. L., & Pereira, T. (2015). Ingestion of microplastics by commercial fish off the Portuguese coast. Marine Pollution Bulletin, 101, 119–126.

    CAS  Article  Google Scholar 

  27. PlasticsEurope. (2015). The facts 2015: an analysis of European plastics production, demand and waste data (pp. 1–38). Brussels: Association of Plastics Manufacturers.

    Google Scholar 

  28. Possatto, F. E., Barletta, M., Costa, M. F., Ivar do Sul, J. A., & Dantas, D. V. (2011). Plastic debris ingestion by marine catfish: an unexpected fisheries impact. Marine Pollution Bulletin, 62, 1098–1102.

    CAS  Article  Google Scholar 

  29. R_Development_Core_Team. (2014). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  30. Rathbone, P., Livingstone, D., & Calder, M. (1998). Surveys monitoring the sea and beaches in the vicinity of Durban, South Africa: a case study. Water Science and Technology, 38, 163–170.

    CAS  Google Scholar 

  31. van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., & Janssen, C. R. (2015). Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environmental Pollution, 199, 10–17.

    Article  Google Scholar 

  32. van der Elst, R. (1993). A guide to the common sea fishes of southern Africa. Capetown: Struik Publishers.

  33. Whitfield, A.K. (1990). Life-history styles of fishes in South African estuaries. Alternative life-history styles of fishes. Springer (pp. 295–308).

  34. Wright, S. L., Rowe, D., Thompson, R. C., & Galloway, T. S. (2013). Microplastic ingestion decreases energy reserves in marine worms. Current Biology, 23, R1031–R1033.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank ANCHOR Environmental Consulting for the provision of samples and Durban Transnet authorities for allowing us access to the port for collection.

Funding

This work was supported by the Rufford Foundation, grant number 18333-1, and the National Research Foundation (NRF), PhD grant number SFH14072177807.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Trishan Naidoo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• HNO3 digestions on juvenile fish are simple, inexpensive and swift.

• Overnight incubation was sufficient for whole fish of 1 g at room temperature.

• With elevated temperature, fish of 3 g digested in 30 min.

• Four of the five types of plastic survived the digestion, nylon being the exception.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naidoo, T., Goordiyal, K. & Glassom, D. Are Nitric Acid (HNO3) Digestions Efficient in Isolating Microplastics from Juvenile Fish?. Water Air Soil Pollut 228, 470 (2017). https://doi.org/10.1007/s11270-017-3654-4

Download citation

Keywords

  • Ambassis dussumieri
  • Fish
  • Microplastics
  • Plastics
  • Nitric acid
  • Fish digestion