Skip to main content

Application of Zeolites for Sustainable Agriculture: a Review on Water and Nutrient Retention

Abstract

Developing urbanization, water shortage, watercourse pollution, and demands for more food due to population growth require a more efficient water irrigation and fertilizer application. Retaining nutrients and water in agricultural soils brings about higher crop yields and prevents pollution of water courses. Among different solutions, zeolites, which are environmental friendly, ubiquitous, and inexpensive, have been extensively employed in agricultural activities. These minerals are considered as soil conditioners to improve soil physical and chemical properties including infiltration rate, saturated hydraulic conductivity (K s), water holding capacity (WHC), and cation exchange capacity (CEC). Natural and surface-modified zeolites can efficiently hold water and nutrients including ammonium (NH4 +), nitrate (NO3 ) and phosphate (PO4 3−), potassium (K+), and sulfate (SO4 2−) in their unique porous structures. Their application as slow-release fertilizers (SRFs) are reported as well. Therefore, zeolite application can improve both water use efficiency (WUE) and nutrient use efficiency (NUE) in agricultural activities and consequently can reduce the potential of surface and groundwater pollution. This review paper summarizes findings in the literature about the impact of zeolite applications on water and nutrient retention in the agriculture. Furthermore, it explores benefits and drawbacks of zeolite applications in this regard.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

BTEX:

Benzene, toluene, ethyl benzene, and xylene

BTC:

Breakthrough curve

CEC/ECEC:

Cation exchange capacity/external cation exchange capacity

DODMA/DODMAB:

Dioctadecyldimethylammonium/ dioctadecyldimethylammonium bromide

ECiw :

Electrical conductivity of irrigation water

ECw :

Electrical conductivity

HDTMA/HDTMAB:

Hexadecyltrimethylammonium/ hexadecyltrimethylammonium bromide

K fs :

Field saturated hydraulic conductivity

K s :

Saturated hydraulic conductivity

MCL:

Maximum contaminant level

NUE:

Nitrogen/nutrient use efficiency

PR:

Phosphate rock

s :

Sorptivity

SARiw :

Sodium adsorption ratio of irrigation water

SMZ:

Surfactant-modified zeolite

SRF:

Slow-release fertilizer

t :

Time

VOC:

Volatile organic compounds

v v −1 :

Volume fraction

WHC:

Water holding capacity

WHO:

World Health Organization

WUE:

Water use efficiency

w w −1 :

Mass fraction

XRD:

X-ray diffraction

z :

Cumulative infiltration

Z :

Zeolite application rate

σ g :

Mean soil particle diameter standard deviation

Al:

Aluminum

AsO4 −3 :

Arsenate

Ca:

Calcium

Cd:

Cadmium

Cr:

Chrome

CrO4 2− :

Chromate

Cs:

Cesium

Cu:

Copper

Fe:

Iron

K:

Potassium

Mn:

Manganese

N:

Nitrogen

Na:

Sodium

Ni:

Nickel

NH4 + :

Ammonium

NO3 :

Nitrate

N2O:

Nitrous oxide

P:

Phosphorous

Pb:

Lead

PO4 3− :

Phosphate

S:

Sulfur

Si:

Silicon

SO4 2− :

Sulfate

Sr:

Strontium

Zn:

Zinc

References

  • Abbasi, M. K., Tahir, M. M., Sabir, N., & Khurshid, M. (2015). Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth, 6(1), 197.

    Article  Google Scholar 

  • Aghaalikhani, M., Gholamhoseini, M., Dolatabadian, A., Khodaei-Joghan, A., & Sadat Asilan, K. (2012). Zeolite influences on nitrate leaching, nitrogen-use efficiency, yield and yield components of canola in sandy soil. Archives of Agronomy and Soil Science, 58(10), 1149–1169.

    CAS  Article  Google Scholar 

  • Ahmed, O. H., Braine Yap, C., & Nik Muhamad, A. (2010). Minimizing ammonia loss from urea through mixing with zeolite and acid sulphate soil. International Journal of the Physical Sciences, 5(14), 2198–2202.

    CAS  Google Scholar 

  • Aiyuk, S., Xu, H., & Van Haandel, A. (2004). Removal of ammonium nitrogen from pretreated domestic sewage using a natural ion exchanger. Environmental Technology, 25(11), 1321–1330.

    CAS  Article  Google Scholar 

  • Akhtar, M., Hassan, F., Ahmed, M., Hayat, R., & Stöckle, C. O. (2016). Is rainwater harvesting an option for designing sustainable cropping patterns for rainfed agriculture? Land Degradation & Development, 27(3), 630–640.

    Article  Google Scholar 

  • Al-Busaidi, A., Yamamoto, T., Inoue, M., Eneji, A. E., Mori, Y., & Irshad, M. (2008). Effects of zeolite on soil nutrients and growth of barley following irrigation with saline water. Journal of Plant Nutrition, 31(7), 1159–1173.

    CAS  Article  Google Scholar 

  • Allen, E., & Ming, D. (1995). Recent progress in the use of natural zeolites in agronomy and horticulture. Natural Zeolites, 93, 477–490.

    Google Scholar 

  • Allen, E., Hossner, L., Ming, D., & Henninger, D. (1993). Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures. Soil Science Society of America Journal, 57(5), 1368–1374.

    CAS  Article  Google Scholar 

  • Anderson, S. H., Udawatta, R. P., Seobi, T., & Garrett, H. E. (2009). Soil water content and infiltration in agroforestry buffer strips. Agroforestry Systems, 75(1), 5–16.

    Article  Google Scholar 

  • Aschebrook-Kilfoy, B., Shu, X., Gao, Y., Ji, B., Yang, G., Li, H. L., Rothman, N., Chow, W., Zheng, W., & Ward, M. H. (2013). Thyroid cancer risk and dietary nitrate and nitrite intake in the Shanghai women’s health study. International Journal of Cancer, 132(4), 897–904.

    CAS  Article  Google Scholar 

  • Asilian, H., Mortazavi, S., Kazemian, H., Phaghiehzadeh, S., Shahtaheri, S., & Salem, M. (2004). Removal of ammonia from air, using three Iranian natural zeolites. Iranian Journal of Public Health, 33(1), 45–51.

    CAS  Google Scholar 

  • Azooz, R., & Arshad, M. (1996). Soil infiltration and hydraulic conductivity under long-term no-tillage and conventional tillage systems. Canadian Journal of Soil Science, 76(2), 143–152.

    Article  Google Scholar 

  • Baek, K., Shin, H., Lee, H., Jun, Y., & Yang, J. (2002). Statistical modeling of electrochemical removal of sodium in fermented food composts. Korean Journal of Chemical Engineering, 19(4), 627–631.

    CAS  Article  Google Scholar 

  • Baerlocher, C., McCusker, L. B., & Olson, D. H. (2007). Atlas of zeolite framework types. Elsevier.

  • Bagarello, V., Iovino, M., Palazzolo, E., Panno, M., & Reynolds, W. (2006). Field and laboratory approaches for determining sodicity effects on saturated soil hydraulic conductivity. Geoderma, 130(1), 1–13.

    CAS  Article  Google Scholar 

  • Bakhshayesh, B. E., Delkash, M., & Scholz, M. (2014). Response of vegetables to cadmium-enriched soil. Water, 6(5), 1246–1256.

    Article  CAS  Google Scholar 

  • Bansiwal, A. K., Rayalu, S. S., Labhasetwar, N. K., Juwarkar, A. A., & Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Journal of Agricultural and Food Chemistry, 54(13), 4773–4779.

    CAS  Article  Google Scholar 

  • Barrer, R., & Klinowski, J. (1972). Influence of framework charge density on ion-exchange properties of zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 68, 1956–1963.

    CAS  Article  Google Scholar 

  • Barrer, R., Davies, J., & Rees, L. (1968). Thermodynamics and thermochemistry of cation exchange in zeolite Y. Journal of Inorganic and Nuclear Chemistry, 30(12), 3333–3349.

    CAS  Article  Google Scholar 

  • Barros, M., Zola, A., Arroyo, P., Sousa-Aguiar, E., & Tavares, C. (2003). Binary ion exchange of metal ions in Y and X zeolites. Brazilian Journal of Chemical Engineering, 20(4), 413–421.

    CAS  Article  Google Scholar 

  • Bautista, J. M., Kim, H., Ahn, D., Zhang, R., & Oh, Y. (2011). Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite. Korean Journal of Chemical Engineering, 28(1), 189–194.

    CAS  Article  Google Scholar 

  • Behin, J., & Sadeghi, N. (2016). Utilization of waste lignin to prepare controlled-slow release urea. International Journal of Recycling of Organic Waste in Agriculture, 5(4), 289–299.

    Article  Google Scholar 

  • Bernardi, A. C., Oliviera, P. P. A., De Melo Monte, M. B., & Souza-Barros, F. (2013). Brazilian sedimentary zeolite use in agriculture. Microporous and Mesoporous Materials, 167, 16–21.

    Article  CAS  Google Scholar 

  • Bernardi, A. D. C., Mendonça, F., Haim, P., Werneck, C., & Monte, M. D. M. (2009). Water availability and rice yield due to levels of zeolitic concentrate. Irriga, 14(2), 123–134.

    Google Scholar 

  • Bhardwaj, D., Sharma, M., Sharma, P., & Tomar, R. (2012). Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. Journal of Hazardous Materials, 227, 292–300.

    Article  CAS  Google Scholar 

  • Bigelow, C. A., Bowman, D. C., Cassel, D. K., & Rufty, T. W. (2001). Creeping bentgrass response to inorganic soil amendments and mechanically induced subsurface drainage and aeration. Crop Science, 41(3), 797–805.

    Article  Google Scholar 

  • Bittelli, M., Campbell, G. S., & Tomei, F. (2015). Soil physics with Python: transport in the soil-plant-atmosphere system. OUP Oxford.

  • Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61(1), 43–56.

    CAS  Article  Google Scholar 

  • Bugbee, G., & Elliott, G. (1998). Leaching of nitrogen and phosphorus from potting media containing biosolids compost as affected by organic and clay amendments. Bulletin of Environmental Contamination and Toxicology, 60(5), 716–723.

    CAS  Article  Google Scholar 

  • Cahn, M., Bouldin, D., & Cravo, M. (1992). Nitrate sorption in the profile of an acid soil. Plant and Soil, 143(2), 179–183.

    CAS  Article  Google Scholar 

  • Chelishehev, N., Volodin, N., & Kryukov, V. (1988). Ion exchange properties of natural high silica zeolites

  • Chesworth, W., Van Straaten, P., Smith, P., & Sadura, S. (1987). Solubility of apatite in clay and zeolite bearing systems: application to agriculture. Applied Clay Science, 2(3), 291–297.

    CAS  Article  Google Scholar 

  • Chmielewska, E. (2014a). Designing clinoptiloliterich tuff columns for adsorptive filtration of water with enhanced ammonium concentration. Fresenius Environmental Bulletin, 23(5).

  • Chmielewska, E. (2014b). Zeolitic adsorption in course of pollutants mitigation and environmental control. Journal of Radioanalytical and Nuclear Chemistry, 299(1), 255–260.

    CAS  Article  Google Scholar 

  • Chmielewska, E., & Lesný, J. (2012). Selective ion exchange onto Slovakian natural zeolites in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 293(2), 535–543.

    CAS  Article  Google Scholar 

  • Coblentz, W., Daniels, M., Gunsaulis, J., Turner, J., Scarbrough, D., Humphry, J., Coffey, K., Moore, P., Teague, K., & Speight, J. (2004). Effects of nitrogen fertilization on phosphorus uptake in bermudagrass forage grown on high soil-test phosphorus sites. The Professional Animal Scientists, 20(2), 146–154.

    Article  Google Scholar 

  • Cobzaru, C., & Inglezakis, V. (2012). Mathematical modeling of sorption process of Cu 2 ions on analcime and clinoptilolite. Environmental Engineering and Management Journal, 11(11).

  • Colella, C. (1996). Ion exchange equilibria in zeolite minerals. Mineralium Deposita, 31(6), 554–562.

    CAS  Article  Google Scholar 

  • Colombani, N., Mastrocicco, M., Di Giuseppe, D., Faccini, B., & Coltorti, M. (2015). Batch and column experiments on nutrient leaching in soils amended with Italian natural zeolitites. Catena, 127, 64–71.

    CAS  Article  Google Scholar 

  • Cordoves, A. P., Valdés, M. G., Fernández, J. T., Luis, G. P., García-Calzón, J., & García, M. D. (2008). Characterization of the binding site affinity distribution of a surfactant-modified clinoptilolite. Microporous and Mesoporous Materials, 109(1), 38–48.

    Article  CAS  Google Scholar 

  • Delkash, M., Bakhshayesh, B. E., & Kazemian, H. (2015). Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials, 214, 224–241.

    CAS  Article  Google Scholar 

  • Delkash, M., Al-Faraj, F. A., & Scholz, M. (2014). Comparing the export coefficient approach with the soil and water assessment tool to predict phosphorous pollution: the Kan watershed case study. Water, Air, & Soil Pollution, 225(10), 1–17.

    CAS  Article  Google Scholar 

  • Demir, A., Gunay, A., & Debik, E. (2002). Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite. Water SA, 28(3), 329–336.

    CAS  Article  Google Scholar 

  • Dolley, T. (2014). US Geological Survey Mineral Commodity Summaries 2014. US Geological Survey, 138–139.

  • Doublet, J., Francou, C., Poitrenaud, M., & Houot, S. (2010). Sewage sludge composting: Influence of initial mixtures on organic matter evolution and N availability in the final composts. Waste Management, 30(10), 1922–1930.

    CAS  Article  Google Scholar 

  • Dwairi, I. (1998). Renewable, controlled and environmentally safe phosphorus release in soils from mixtures of NH4 -phillipsite tuff and phosphate rocks. Environmental Geology, 34(4), 293–296.

    CAS  Article  Google Scholar 

  • Ebrazi, B., & Banihabib, M. E. (2015). Simulation of Ca2 and Mg2 removal process in fixed-bed column of natural zeolite. Desalination and Water Treatment, 55(4), 1116–1124.

    CAS  Article  Google Scholar 

  • Eick, M. J., Brady, W. D., & Lynch, C. K. (1999). Charge properties and nitrate adsorption of some acid southeastern soils. Journal of Environmental Quality, 28(1), 138–144.

    CAS  Article  Google Scholar 

  • El Kenawy, A., McCabe, M. F., Vicente-Serrano, S., López-Moreno, J., & Robaa, S. (2016). Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013. Cuadernos de Investigación Geográfica, 42(1), 145–166.

    Article  Google Scholar 

  • Elliot, A. D., & Zhang, D. (2005). Controlled release zeolite fertilisers: a value added product produced from fly ash.

  • Enamorado-Horrutiner, Y., Villanueva-Tagle, M., Behar, M., Rodríguez-Fuentes, G., Dias, J. F., & Pomares-Alfonso, M. (2016). Cuban zeolite for lead sorption: application for water decontamination and metal quantification in water using nondestructive techniques. International journal of Environmental Science and Technology, 13(5), 1245–1256.

    CAS  Article  Google Scholar 

  • Englert, A., & Rubio, J. (2005). Characterization and environmental application of a Chilean natural zeolite. International Journal of Mineral Processing, 75(1), 21–29.

    CAS  Article  Google Scholar 

  • Faghihian, H., Kazemian, H., & Maragheh, M. (1999a). Iranian clinoptilolite-rich tuffs for radionuclide removal from water. Journal of Radioanalytical and Nuclear Chemistry, 242(2), 491–495.

    CAS  Article  Google Scholar 

  • Faghihian, H., Marageh, M. G., & Kazemian, H. (1999b). The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb 2 , Ni 2 , Cd 2 , Ba 2 from municipal wastewater. Applied Radiation and Isotopes, 50(4), 655–660.

    CAS  Article  Google Scholar 

  • Feigin, A., Ravina, I., & Shalhevet, J. (2012). Irrigation with treated sewage effluent: management for environmental protection. Springer Science & Business Media.

  • Filippidis, A. (2010). Environmental, industrial and agricultural applications of Hellenic natural zeolite. Hellenic Journal of Geosciences, 45(20109), 91.

    Google Scholar 

  • Franzluebbers, A. (2002). Water infiltration and soil structure related to organic matter and its stratification with depth. Soil and Tillage Research, 66(2), 197–205.

    Article  Google Scholar 

  • Frenkel, H., Goertzen, J., & Rhoades, J. (1978). Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Science Society of America Journal, 42(1), 32–39.

    CAS  Article  Google Scholar 

  • Ghadiri, S., Nabizadeh, R., Mahvi, A., Nasseri, S., Kazemian, H., Mesdaghinia, A., & Nazmara, S. (2010). Methyl tert-butyl ether adsorption on surfactant modified natural zeolites. Iranian Journal of Environmental Health Science & Engineering, 7(3), 241.

    CAS  Google Scholar 

  • Ghasemi, Z., Sourinejad, I., Kazemian, H., & Rohani, S. (2016). Application of zeolites in aquaculture industry: a review. Reviews in Aquaculture.

  • Gholamhoseini, M., Ghalavand, A., Khodaei-Joghan, A., Dolatabadian, A., Zakikhani, H., & Farmanbar, E. (2013). Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil and Tillage Research, 126, 193–202.

    Article  Google Scholar 

  • Gholamhoseini, M., AghaAlikhani, M., Dolatabadian, A., Khodaei-Joghan, A., & Zakikhani, H. (2012). Decreasing nitrogen leaching and increasing canola forage yield in a sandy soil by application of natural zeolite. Agronomy Journal, 104(5), 1467–1475.

    CAS  Article  Google Scholar 

  • Gholizadeh-Sarabi, S., & Sepaskhah, A. R. (2013). Effect of zeolite and saline water application on saturated hydraulic conductivity and infiltration in different soil textures. Archives of Agronomy and Soil Science, 59(5), 753–764.

    CAS  Article  Google Scholar 

  • Githinji, L. J., Dane, J. H., & Walker, R. H. (2011). Physical and hydraulic properties of inorganic amendments and modeling their effects on water movement in sand-based root zones. Irrigation Science, 29(1), 65–77.

    Article  Google Scholar 

  • Gonzales, R., & Fuentes, R. (1988). Cuban experience with the use of natural zeolite subsrates in soilless culture, 13–21.

  • Greer, F. R., & Shannon, M. (2005). Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics, 116(3), 784–786.

    Article  Google Scholar 

  • Gruener, J. E., Ming, D. W., Henderson, K. E., & Galindo, C. (2003). Common ion effects in zeoponic substrates: wheat plant growth experiment. Microporous and Mesoporous Materials, 61(1), 223–230.

    CAS  Article  Google Scholar 

  • Gu, B., Ge, Y., Chang, S. X., Luo, W., & Chang, J. (2013). Nitrate in groundwater of China: sources and driving forces. Global Environmental Change, 23(5), 1112–1121.

    Article  Google Scholar 

  • Gül, A., Eroğul, D., & Ongun, A. R. (2005). Comparison of the use of zeolite and perlite as substrate for crisp-head lettuce. Scientia Horticulturae, 106(4), 464–471.

    Article  CAS  Google Scholar 

  • Guo, M., Liu, M., Liang, R., & Niu, A. (2006). Granular urea-formaldehyde slow-release fertilizer with superabsorbent and moisture preservation. Journal of Applied Polymer Science, 99(6), 3230–3235.

    CAS  Article  Google Scholar 

  • Haruna Ahmed, O., Husin, A., & Husni Mohd Hanif, A. (2008). Ammonia volatilization and ammonium accumulation from urea mixed with zeolite and triple superphosphate. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 58(2), 182–186.

    Google Scholar 

  • Hawkesford, M. J., & De Kok, L. J. (2006). Managing sulphur metabolism in plants. Plant, Cell & Environment, 29(3), 382–395.

    CAS  Article  Google Scholar 

  • He, Z., Calvert, D., Alva, A., Li, Y., & Banks, D. (2002). Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant and Soil, 247(2), 253–260.

    CAS  Article  Google Scholar 

  • Heckrath, G., Brookes, P., Poulton, P., & Goulding, K. (1995). Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. Journal of Environmental Quality, 24(5), 904–910.

    CAS  Article  Google Scholar 

  • Hershey, D., Paul, J., & Carlson, R. (1980). Evaluation of potassium-enriched clinoptilolite as a potassium source for potting media [Chrysanthemum morifolium]. HortScience (USA).

  • Hong, J., & Park, K. (2005). Compost biofiltration of ammonia gas from bin composting. Bioresource Technology, 96(6), 741–745.

    CAS  Article  Google Scholar 

  • Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I., & Shimada, J. (2013). The use of δ 15 N and δ 18 O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Research, 47(8), 2661–2675.

    CAS  Article  Google Scholar 

  • Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175(1), 247–252.

    CAS  Article  Google Scholar 

  • Huang, Z., & Petrovic, A. (1994). Clinoptilolite zeolite influence on nitrate leaching and nitrogen use efficiency in simulated sand based golf greens. Journal of Environmental Quality, 23(6), 1190–1194.

    CAS  Article  Google Scholar 

  • Ibrahim-Saeedi, F., & Sepaskhah, A. R. (2013). Effects of a bentonite–water mixture on soil-saturated hydraulic conductivity. Archives of Agronomy and Soil Science, 59(3), 377–392.

    Article  Google Scholar 

  • Inglezakis, V., Stylianou, M., Loizidou, M., & Zorpas, A. (2015). Experimental studies and modeling of clinoptilolite and vermiculite fixed beds for Mn2 , Zn2 , and Cr3 removal. Desalination and Water Treatment, 1–13.

  • Inglezakis, V., Elaiopoulos, K., Aggelatou, V., & Zorpas, A. A. (2012). Treatment of underground water in open flow and closed-loop fixed bed systems by utilizing the natural minerals clinoptilolite and vermiculite. Desalination and Water Treatment, 39(1–3), 215–227.

    CAS  Article  Google Scholar 

  • Inglezakis, V. J. (2005). The concept of “capacity” in zeolite ion-exchange systems. Journal of Colloid and Interface Science, 281(1), 68–79.

    CAS  Article  Google Scholar 

  • Inglezakis, V. J., & Grigoropoulou, H. P. (2003). Modeling of ion exchange of Pb 2 in fixed beds of clinoptilolite. Microporous and Mesoporous Materials, 61(1), 273–282.

    CAS  Article  Google Scholar 

  • Ippolito, J. A., Tarkalson, D. D., & Lehrsch, G. A. (2011). Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Science, 176(3), 136–142.

    CAS  Article  Google Scholar 

  • Jabro, J. (1992). Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Transactions of ASAE, 35(2), 557–560.

    Article  Google Scholar 

  • Jalali, M., & Kolahchi, Z. (2009). Effect of irrigation water quality on the leaching and desorption of phosphorous from soil. Soil and Sediment Contamination, 18(5), 576–589.

    CAS  Article  Google Scholar 

  • Jalali, M. (2009). Phosphorous concentration, solubility and species in the groundwater in a semi-arid basin, southern Malayer, western Iran. Environmental Geology, 57(5), 1011–1020.

    CAS  Article  Google Scholar 

  • Jewell, S., & Kimball, S. (2016). US Geological Survey 2016: Mineral Commodity Summaries. US Govt. Printing Office: Reston.

    Google Scholar 

  • Jha, B., & Singh, D. N. (2016). Fly ash zeolites: innovations, applications, and directions. Springer.

  • Jha, V. K., & Hayashi, S. (2009). Modification on natural clinoptilolite zeolite for its NH 4+ retention capacity. Journal of Hazardous Materials, 169(1), 29–35.

    CAS  Article  Google Scholar 

  • Jiang, J., Huang, Y., Liu, X., & Huang, H. (2014). The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting. Waste Management, 34(9), 1595–1602.

    CAS  Article  Google Scholar 

  • Jlassi, W., Nadal-Romero, E., & García-Ruiz, J. (2016). Modernization of new irrigated lands in a scenario of increasing water scarcity: from large reservoirs to small ponds.

  • Kazemian, H., Gedik, K., & Imamoglu, I. (2012). Environmental applications of natural zeolites. Handbook of natural zeolites, 473.

  • Kazemian, H., & Mallah, M. (2008). Removal of chromate ion from contaminated synthetic water using MCM-41/ZSM-5 composite. Journal of Environmental Health Science & Engineering, 5(1), 73–77.

    CAS  Google Scholar 

  • Kazemian, H., & Mallah, M. H. (2006). Elimination of Cd2 and Mn2 from wastewaters using natural clinoptilolite and synthetic zeolite P. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 25(4), 91–94.

    CAS  Google Scholar 

  • Kazemian, H. (2002). Zeolite science in Iran: a brief review.

  • Kazemian, H., Rajec, P., Macasek, F., & Kufacakoa, J. (2001). Investigation of lead removal from wastewater by Iranian natural zeolites using 212Pb as a radiotracer. Studies in Surface Science and Catalysis, 135, 6–31.

    Google Scholar 

  • Khatri, K. L., & Smith, R. (2006). Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrigation Science, 25(1), 33–43.

    Article  Google Scholar 

  • Klučáková, M. (2010). Adsorption of nitrate on humic acids studied by flow-through coulometry. Environmental Chemistry Letters, 8(2), 145–148.

    Article  CAS  Google Scholar 

  • Kuroda, K., Hanajima, D., Fukumoto, Y., Suzuki, K., Kawamoto, S., Shima, J., & Haga, K. (2004). Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes. Bioscience, Biotechnology, and Biochemistry, 68(2), 286–292.

    CAS  Article  Google Scholar 

  • Lai, T., & Eberl, D. D. (1986). Controlled and renewable release of phosphorous in soils from mixtures of phosphate rock and NH4-exchanged clinoptilolite. Zeolites, 6(2), 129–132.

    CAS  Article  Google Scholar 

  • Lal, R., & Shukla, M. K. (2004). Principles of soil physics. CRC Press.

  • Lancellotti, I., Toschi, T., Passaglia, E., & Barbieri, L. (2014). Release of agronomical nutrient from zeolitite substrate containing phosphatic waste. Environmental Science and Pollution Research, 21(23), 13237–13242.

    CAS  Article  Google Scholar 

  • Leggo, P. J. (2015). The efficacy of the organo-zeolitic bio-fertilizer. Agrotechnology, 2015.

  • Leij, F. J., & van Genuchten, M. T. (2001). 6 Solute Transport. Soil physics companion, 189.

  • Levy, G., Goldstein, D., & Mamedov, A. (2005). Saturated hydraulic conductivity of semiarid soils: combined effects of salinity, sodicity, and rate of wetting. Soil Science Society of America Journal, 69(3), 653–662.

    CAS  Article  Google Scholar 

  • Li, C., Farahbakhshazad, N., Jaynes, D. B., Dinnes, D. L., Salas, W., & McLaughlin, D. (2006). Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecological Modelling, 196(1), 116–130.

    Article  Google Scholar 

  • Li, H., Xin, H., Liang, Y., & Burns, R. (2008). Reduction of ammonia emissions from stored laying hen manure through topical application of zeolite, Al Clear, Ferix-3, or poultry litter treatment. The Journal of Applied Poultry Research, 17(4), 421–431.

    CAS  Article  Google Scholar 

  • Li, X., Hu, C., Delgado, J. A., Zhang, Y., & Ouyang, Z. (2007). Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agricultural Water Management, 89(1), 137–147.

    Article  Google Scholar 

  • Li, Z., & Zhang, Y. (2010). Use of surfactant-modified zeolite to carry and slowly release sulfate. Desalination and Water Treatment, 21(1–3), 73–78.

    Article  CAS  Google Scholar 

  • Li, Z. (2003). Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous and Mesoporous Materials, 61(1), 181–188.

    CAS  Article  Google Scholar 

  • Lim, S., Lee, D., Kwak, J., Park, H., Kim, H., & Choi, W. (2015). Fly ash and zeolite amendments increase soil nutrient retention but decrease paddy rice growth in a low fertility soil. Journal of Soils and Sediments, 1–11.

  • Lin, C., Lo, S., Lin, H., & Lee, Y. (1998). Stabilization of cadmium contaminated soils using synthesized zeolite. Journal of Hazardous Materials, 60(3), 217–226.

    CAS  Article  Google Scholar 

  • Mackinnon, I., Barr, K., Miller, E., Hunter, S., & Pinel, T. (2003). Nutrient removal from wastewaters using high performance materials, 47(11), 101–107.

  • MacKown, C., & Tucker, T. (1985). Ammonium nitrogen movement in a coarse-textured soil amended with zeolite. Soil Science Society of America Journal, 49(1), 235–238.

    CAS  Article  Google Scholar 

  • MacKown, C. T. (1978). Role of mineral zeolites as soil amendments.

  • Mahabadi, A. A., Hajabbasi, M., Khademi, H., & Kazemian, H. (2007). Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137(3), 388–393.

    CAS  Article  Google Scholar 

  • Malekian, R., Abedi-Koupai, J., & Eslamian, S. S. (2011a). Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. Journal of Hazardous Materials, 185(2), 970–976.

    CAS  Article  Google Scholar 

  • Malekian, R., Abedi-Koupai, J., Eslamian, S. S., Mousavi, S. F., Abbaspour, K. C., & Afyuni, M. (2011b). Ion-exchange process for ammonium removal and release using natural Iranian zeolite. Applied Clay Science, 51(3), 323–329.

    CAS  Article  Google Scholar 

  • Mamedov, A. I., Bar-Yosef, B., Levkovich, I., Rosenberg, R., Silber, A., Fine, P., & Levy, G. J. (2016). Amending soil with sludge, manure, humic acid, orthophosphate and phytic acid: effects on infiltration, runoff and sediment loss. Land Degradation & Development, 27(6), 1629–1639.

    Article  Google Scholar 

  • McGilloway, R., Weaver, R., Ming, D., & Gruener, J. (2003). Nitrification in a zeoponic substrate. Plant and Soil, 256(2), 371–378.

    CAS  Article  Google Scholar 

  • McNeal, B., & Coleman, N. (1966). Effect of solution composition on soil hydraulic conductivity. Soil Science Society of America Journal, 30(3), 308–312.

    CAS  Article  Google Scholar 

  • Meisinger, J., & Jokela, W. (2000). Ammonia volatilization from dairy and poultry manure. Managing nutrients and pathogens from animal agriculture. NRAES-130. Natural Resource, Agriculture, and Engineering Service, Ithaca, NY, 334–354.

  • Menhaje-Bena, R., Kazemian, H., Shahtaheri, S., Ghazi-Khansari, M., & Hosseini, M. (2004). Evaluation of iron modified zeolites for removal of arsenic from drinking water. Studies in Surface Science and Catalysis, 154, 1892–1899.

    Article  Google Scholar 

  • Miller, G. L. (2000). Physiological response of Bermuda grass grown in soil amendments during drought stress. Hortscience, 35(2), 213–216.

    Google Scholar 

  • Ming, D. W., & Allen, E. R. (2001). Use of natural zeolites in agronomy, horticulture and environmental soil remediation. Reviews in Mineralogy and Geochemistry, 45(1), 619–654.

    CAS  Article  Google Scholar 

  • Ming, D. W., & Mumpton, F. A. (1989). Zeolites in soils. Minerals in soil environments (mineralsinsoile), 873–911.

  • Mnkeni, P., Semoka, J., & Kaitaba, E. (1994). Effects of Mapogoro phillipsite on availability of phosphorus in phosphate rocks. Tropical Agriculture, 71(4), 249–253.

    CAS  Google Scholar 

  • Moharami, S., & Jalali, M. (2014). Phosphorus leaching from a sandy soil in the presence of modified and un-modified adsorbents. Environmental Monitoring and Assessment, 186(10), 6565–6576.

    CAS  Article  Google Scholar 

  • Molla, A., Ioannou, Z., Dimirkou, A., & Skordas, K. (2014). Surfactant modified zeolites with iron oxide for the removal of ammonium and nitrate ions from waters and soils. Topics in Chemistry and Materials Science, Innoslab Ltd, 7, 38–49.

    Google Scholar 

  • Moosavi, A. A., & Sepaskhah, A. R. (2012). Determination of unsaturated soil hydraulic properties at different applied tensions and water qualities. Archives of Agronomy and Soil Science, 58(1), 11–38.

    Article  CAS  Google Scholar 

  • Moraetis, D., Papagiannidou, S., Pratikakis, A., Pentari, D., & Komnitsas, K. (2015). Effect of zeolite application on potassium release in sandy soils amended with municipal compost. Desalination and Water Treatment, 1–12.

  • Mumpton, F. A. (1999). La roca magica: uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3463–3470.

    CAS  Article  Google Scholar 

  • Mumpton, F. A. (1985). Using zeolites in agriculture.

  • Mumpton, F. A. (1980). Zeolites and mesothelioma. American Scientist, 68(3), 244–244.

    Google Scholar 

  • Mumpton, F. (1972). Clinoptilolite redefined, Ameralogist Mineralogist, 45 (1960) 351-369.[137] JR Boles, Composition, optical properties, cell dimensions, and thermal stability of some heulandites group zeolites. American Mineralogist, 57, 1463–1493.

    Google Scholar 

  • Nagaraja, M. S., Reddy, G. P., & Srinivasamurthy, C. A. (2016). Estimations of soil fertility in physically degraded agricultural soils through selective accounting of fine earth and gravel fractions. Solid Earth, 7(3), 897.

    Article  Google Scholar 

  • Nakhli, S. A., Ahmadizadeh, K., Fereshtehnejad, M., Rostami, M. H., Safari, M., & Borghei, S. M. (2014). Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia. SpringerPlus, 3, 112–1801–3-112. eCollection 2014.

  • Ni, B., Liu, M., Lü, S., Xie, L., & Wang, Y. (2010a). Multifunctional slow-release organic–inorganic compound fertilizer. Journal of Agricultural and Food Chemistry, 58(23), 12373–12378.

    CAS  Article  Google Scholar 

  • Ni, B., Liu, M., Lü, S., Xie, L., Zhang, X., & Wang, Y. (2010b). Novel slow-release multielement compound fertilizer with hydroscopicity and moisture preservation. Industrial & Engineering Chemistry Research, 49(10), 4546–4552.

    CAS  Article  Google Scholar 

  • Nus, J., & Brauen, S. (1991). Clinoptilolitic zeolite as an amendment for establishment of creeping bentgrass on sandy media. Hortscience, 26(2), 117–119.

    CAS  Google Scholar 

  • Nyssen, J., Frankl, A., Zenebe, A., Poesen, J., & Deckers, J. (2015). Environmental conservation for food production and sustainable livelihood in tropical Africa. Land Degradation and Development, 26(7), 629–631.

    Article  Google Scholar 

  • Ober, J. A. (2017). Mineral commodity summaries 2017.

  • Omar, O. L., Ahmed, O. H., & Muhamad, A. N. (2010). Minimizing ammonia volatilization in waterlogged soils through mixing of urea with zeolite and sago waste water. International Journal of Physical Sciences, 5(14), 2193–2197.

    Google Scholar 

  • Pal, D., Bhattacharyya, T., Ray, S., Chandran, P., Srivastava, P., Durge, S., & Bhuse, S. (2006). Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of the Peninsular India in redefining the sodic soils. Geoderma, 136(1), 210–228.

    CAS  Article  Google Scholar 

  • Peña-Haro, S., Llopis-Albert, C., Pulido-Velazquez, M., & Pulido-Velazquez, D. (2010). Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain. Journal of Hydrology, 392(3), 174–187.

    Article  CAS  Google Scholar 

  • Pepper, I., Ferguson, G., & Kneebone, W. (1982). Clinoptilolite zeolite: a new medium for turfgrass growth. Proceedings of ASA: Agronomy Abstracts, 145.

  • Perrin, T. S., Drost, D. T., Boettinger, J. L., & Norton, J. M. (1998a). Ammonium-loaded clinoptilolite: a slow-release nitrogen fertilizer for sweet corn. Journal of Plant Nutrition, 21(3), 515–530.

    CAS  Article  Google Scholar 

  • Perrin, T., Boettinger, J., Drost, D., & Norton, J. M. (1998b). Decreasing nitrogen leaching from sandy soil with ammonium-loaded clinoptilolite. Journal of Environmental Quality, 27(3), 656–663.

    CAS  Article  Google Scholar 

  • Phillips, I. (1998). Use of soil amendments to reduce nitrogen, phosphorus and heavy metal availability. Journal of Soil Contamination, 7(2), 191–212.

    CAS  Article  Google Scholar 

  • Pickering, H. W., Menzies, N. W., & Hunter, M. N. (2002). Zeolite/rock phosphate—a novel slow release phosphorus fertiliser for potted plant production. Scientia Horticulturae, 94(3), 333–343.

    CAS  Article  Google Scholar 

  • Piñón-Villarreal, A. R., Bawazir, A. S., Shukla, M. K., & Hanson, A. T. (2013). Retention and transport of nitrate and ammonium in loamy sand amended with clinoptilolite zeolite. Journal of Irrigation and Drainage Engineering, 139(9), 755–765.

    Article  Google Scholar 

  • Polat, E., Karaca, M., Demir, H., & Naci-Onus, A. (2004). Use of natural zeolite (clinoptilolite) in agriculture. Journal of Fruit and Ornamental Plant Research, 12(1), 183–189.

    CAS  Google Scholar 

  • Qian, J. H., Doran, J. W., Weier, K. L., Mosier, A. R., Peterson, T. A., & Power, J. F. (1997). Soil denitrification and nitrous oxide losses under corn irrigated with high-nitrate groundwater. Journal of Environmental Quality, 26(2), 348–360.

    CAS  Article  Google Scholar 

  • Rabai, K. A., Ahmed, O. H., & Kasim, S. (2013). Use of formulated nitrogen, phosphorus, and potassium compound fertilizer using clinoptilolite zeolite in maize (Zea mays L.) cultivation. Emirates Journal of Food and Agriculture, 25(9), 713.

    Article  Google Scholar 

  • Ramesh, K., Reddy, K. S., Rashmi, I., Biswas, A., & Islam, K. (2015a). Does particle size of clinoptilolite zeolite have a role in textural properties? Insight through differential pore-volume distribution of Barret, Joyner, and Halenda Model. Communications in Soil Science and Plant Analysis, 46(16), 2070–2078.

    CAS  Article  Google Scholar 

  • Ramesh, K., Biswas, A. K., & Patra, A. K. (2015b). Zeolitic farming. Indian Journal of Agronomy, 60(2), 50–56.

    Google Scholar 

  • Ramesh, K., Damodar Reddy, D., Kumar Biswas, A., & Subba Rao, A. (2011). 4 zeolites and their potential uses in agriculture. Advances in Agronomy, 113, 215.

    Google Scholar 

  • Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science (New York, N.Y.), 326(5949), 123–125.

    CAS  Article  Google Scholar 

  • Razmi, Z., & Sepaskhah, A. R. (2012). Effect of zeolite on saturated hydraulic conductivity and crack behavior of silty clay paddled soil. Archives of Agronomy and Soil Science, 58(7), 805–816.

    CAS  Article  Google Scholar 

  • Rehakova, M., Čuvanová, S., Dzivak, M., Rimár, J., & Gaval’Ova, Z. (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science, 8(6), 397–404.

    CAS  Article  Google Scholar 

  • Rivero, L., & Rodríguez-Fuentes, G. (1989). Cuban experience with the use of natural zeolite substrates in soilless culture. Notes, 405, 405–416.

    Google Scholar 

  • Roghani, M., Nakhli, S. A. A., Aghajani, M., Rostami, M. H., & Borghei, S. M. (2016). Adsorption and oxidation study on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite. Journal of Water Process Engineering, 14, 101–107.

    Article  Google Scholar 

  • Sadeghi, L. A., Moazed, H., Hooshmand, A., & Chorom, M. (2010). Effects of Na-zeolite application on nitrate and ammonium retention in a silty loam soil under saturated conditions.

  • Sarkar, B., & Naidu, R. (2015). Nutrient and water use efficiency in soil: the influence of geological mineral amendments. In Nutrient use efficiency: from basics to advances (pp. 29–44). Springer.

  • Schwen, A., Bodner, G., Scholl, P., Buchan, G. D., & Loiskandl, W. (2011). Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil and Tillage Research, 113(2), 89–98.

    Article  Google Scholar 

  • Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., & Charkhi, A. (2011a). Adsorption of petroleum monoaromatics from aqueous solutions using granulated surface modified natural nanozeolites: systematic study of equilibrium isotherms. Water, Air, & Soil Pollution, 217(1–4), 611–625.

    CAS  Article  Google Scholar 

  • Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., Farhadi, F., & Nazmara, S. (2011b). Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles. Water, Air, & Soil Pollution, 219(1–4), 443–457.

    CAS  Article  Google Scholar 

  • Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., Nazmara, S., & AliMohammadi, M. (2011c). Adsorption of BTEX on surfactant modified granulated natural zeolite nanoparticles: parameters optimizing by applying Taguchi experimental design method. Clean: Soil, Air, Water, 39(10), 939–948.

    CAS  Google Scholar 

  • Sepaskhah, A., & Barzegar, M. (2010). Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment. Agricultural Water Management, 98(1), 38–44.

    Article  Google Scholar 

  • Sepaskhah, A., & Yousefi, F. (2007). Effects of zeolite application on nitrate and ammonium retention of a loamy soil under saturated conditions. Soil Research, 45(5), 368–373.

    CAS  Article  Google Scholar 

  • Sfechis, S., Vidican, R., Şandor, M., Stoian, V., Şandor, V., & Muste, B. (2015). Using assessment of zeolite amendments in agriculture. ProEnvironment/ProMediu, 8(21).

  • Sharpley, A. N., Herron, S., & Daniel, T. (2007). Overcoming the challenges of phosphorus-based management in poultry farming. Journal of Soil and Water Conservation, 62(6), 375–389.

    Google Scholar 

  • Sharpley, A. N., Chapra, S., Wedepohl, R., Sims, J., Daniel, T. C., & Reddy, K. (1994). Managing agricultural phosphorus for protection of surface waters: issues and options. Journal of Environmental Quality, 23(3), 437–451.

    CAS  Article  Google Scholar 

  • Stylianou, M., Inglezakis, V., & Loizidou, M. (2015). Comparison of Mn, Zn, and Cr removal in fluidized-and fixed-bed reactors by using clinoptilolite. Desalination and Water Treatment, 53(12), 3355–3362.

    CAS  Article  Google Scholar 

  • Suarez, D. L., Wood, J. D., & Lesch, S. M. (2006). Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agricultural Water Management, 86(1), 150–164.

    Article  Google Scholar 

  • Summaries, M. C. (2015). US Department of the Interior and US Geological Survey. Washington DC.

  • Sutherland, A., Daroub, S., & Ognevich, I. (2004). Addition of clinoptilolite zeolite to a simulated sandy medium to reduce nitrogen leaching.

  • Szerement, J., Ambrożewicz-Nita, A., Kędziora, K., & Piasek, J. (2014). Use of zeolite in agriculture and environmental protection. A short review. Вісник Національного університету (781), 172–177.

  • Taheri-Sodejani, H., Ghobadinia, M., Tabatabaei, S., & Kazemian, H. (2015). Using natural zeolite for contamination reduction of agricultural soil irrigated with treated urban wastewater. Desalination and Water Treatment, 54(10), 2723–2730.

    CAS  Article  Google Scholar 

  • Talebnezhad, R., & Sepaskhah, A. R. (2013). Effects of bentonite on water infiltration in a loamy sand soil. Archives of Agronomy and Soil Science, 59(10), 1409–1418.

    CAS  Article  Google Scholar 

  • Tarkalson, D. D., & Ippolito, J. A. (2010). Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils. Soil Science, 175(7), 357–362.

    CAS  Article  Google Scholar 

  • Thierfelder, C., & Wall, P. C. (2009). Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research, 105(2), 217–227.

    Article  Google Scholar 

  • Thirunavukkarasu, M., & Subramanian, K. (2014). Surface modified nano-zeolite used as carrier for slow release of sulphur. Journal of Applied and Natural Science, 6(1), 19–26.

    CAS  Google Scholar 

  • Thornton, A., Pearce, P., & Parsons, S. (2007a). Ammonium removal from digested sludge liquors using ion exchange. Water Research, 41(2), 433–439.

    CAS  Article  Google Scholar 

  • Thornton, A., Pearce, P., & Parsons, S. (2007b). Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. Journal of Hazardous Materials, 147(3), 883–889.

    CAS  Article  Google Scholar 

  • Tiquia, S., & Tam, N. (2000). Co-composting of spent pig litter and sludge with forced-aeration. Bioresource Technology, 72(1), 1–7.

    CAS  Article  Google Scholar 

  • Torma, S., Vilcek, J., Adamisin, P., Huttmanova, E., & Hronec, O. (2014). Influence of natural zeolite on nitrogen dynamics in soil. Turkish Journal of Agriculture and Forestry, 38(5), 739–744.

    Article  Google Scholar 

  • Vervoort, R., & Cattle, S. (2003). Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. Journal of Hydrology, 272(1), 36–49.

    Article  Google Scholar 

  • Vilcek, J., Torma, S., Adamisin, P., & Hronec, O. (2013). Nitrogen sorption and its release in the soil after zeolite application. Bulgarian Journal of Agricultural Science, 9(2), 228–234.

    Google Scholar 

  • Virta, R. L. (2002). Zeolites. US Geological Survey Minerals Yearbook-2002, 84.1–84.4.

  • Waltz, F. C., Quisenberry, V. L., & McCarty, L. B. (2003). Physical and hydraulic properties of rootzone mixes amended with inorganics for golf putting greens. Agronomy Journal, 95(2), 395–404.

    Article  Google Scholar 

  • Wang, F., & Alva, A. (1996). Leaching of nitrogen from slow-release urea sources in sandy soils. Soil Science Society of America Journal, 60(5), 1454–1458.

    CAS  Article  Google Scholar 

  • Wang, J., Huang, J., Zhao, X., Wu, P., Horwath, W. R., Li, H., Jing, Z., & Chen, X. (2016a). Simulated study on effects of ground managements on soil water and available nutrients in jujube orchards. Land Degradation & Development, 27(1), 35–42.

    Article  Google Scholar 

  • Wang, K., Li, X., He, C., Chen, C., Bai, J., Ren, N., & Wang, J. (2014). Transformation of dissolved organic matters in swine, cow and chicken manures during composting. Bioresource Technology, 168, 222–228.

    CAS  Article  Google Scholar 

  • Wang, Y., Fan, J., Cao, L., & Liang, Y. (2016b). Infiltration and runoff generation under various cropping patterns in the red soil region of China. Land Degradation & Development, 27(1), 83–91.

    Article  Google Scholar 

  • Watanabe, Y., Yamada, H., Tanaka, J., Komatsu, Y., & Moriyoshi, Y. (2005). Ammonium ion exchange of synthetic zeolites: the effect of their open-window sizes, pore structures, and cation exchange capacities. Separation Science and Technology, 39(9), 2091–2104.

    Article  CAS  Google Scholar 

  • Weber, M., Barbarick, K., & Westfall, D. (1983). Ammonium adsorption by a zeolite in a static and a dynamic system. Journal of Environmental Quality, 12(4), 549–552.

    CAS  Article  Google Scholar 

  • Wei, Y., Fan, Y., Wang, M., & Wang, J. (2000). Composting and compost application in China. Resources, Conservation and Recycling, 30(4), 277–300.

    Article  Google Scholar 

  • Williams, K. A., & Nelson, P. V. (1997). Using precharged zeolite as a source of potassium and phosphate in a soilless container medium during potted chrysanthemum production. Journal of the American Society for Horticultural Science, 122(5), 703–708.

    CAS  Google Scholar 

  • Xiubin, H., & Zhanbin, H. (2001). Zeolite application for enhancing water infiltration and retention in loess soil. Resources, Conservation and Recycling, 34(1), 45–52.

    Article  Google Scholar 

  • Youssefi, S., & Waring, M. S. (2015). Indoor transient SOA formation from ozone α-pinene reactions: impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis. Atmospheric Environment, 112, 106–115.

    CAS  Article  Google Scholar 

  • Youssefi, S., & Waring, M. S. (2014). Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios. Environmental Science & Technology, 48(14), 7899–7908.

    CAS  Article  Google Scholar 

  • Youssefi, S., & Waring, M. (2012). Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments. Indoor Air, 22(5), 415–426.

    CAS  Article  Google Scholar 

  • Zhan, Y., Zhu, Z., Lin, J., Qiu, Y., & Zhao, J. (2010). Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite. Journal of Environmental Sciences, 22(9), 1327–1334.

    CAS  Article  Google Scholar 

  • Zhang, P., Avudzega, D. M., & Bowman, R. S. (2007). Removal of perchlorate from contaminated waters using surfactant-modified zeolite. Journal of Environmental Quality, 36(4), 1069–1075.

    CAS  Article  Google Scholar 

  • Zhang, Q., Tongamp, W., & Saito, F. (2010). Mechanochemical route for synthesizing KMgPO4 and NH4MgPO4 for application as slow-release fertilizers. Industrial & Engineering Chemistry Research, 49(5), 2213–2216.

    Article  CAS  Google Scholar 

  • Zhang, Q., & Saito, F. (2009). Mechanochemical synthesis of slow-release fertilizers through incorporation of alumina composition into potassium/ammonium phosphates. Journal of the American Ceramic Society, 92(12), 3070–3073.

    CAS  Article  Google Scholar 

  • Zheng, T., Huang, Y., Zhang, C., & Liu, C. (2006). Reducing non-point source pollution with enhancing infiltration. Journal of Environmental Sciences, 18(1), 115–119.

    Google Scholar 

  • Zwingmann, N., Singh, B., Mackinnon, I. D., & Gilkes, R. J. (2009). Zeolite from alkali modified kaolin increases NH 4 retention by sandy soil: column experiments. Applied Clay Science, 46(1), 7–12.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Delkash.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakhli, S.A.A., Delkash, M., Bakhshayesh, B.E. et al. Application of Zeolites for Sustainable Agriculture: a Review on Water and Nutrient Retention. Water Air Soil Pollut 228, 464 (2017). https://doi.org/10.1007/s11270-017-3649-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3649-1

Keywords

  • Zeolite
  • Sustainable agriculture
  • Water retention
  • Nutrient leaching