Skip to main content
Log in

The Effect of Polyethylene Glycol (PEG) Modification on Fe Dispersal and the Catalytic Degradation of Phenol Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Modification of a catalyst with polyethylene glycol (PEG) created a dramatic increase in the catalytic activity for the degradation of phenol wastewater. The Fe/PEG-modified γ-Al2O3 catalyst was prepared by an impregnation method. The as-prepared catalyst was characterized by X-ray photoelectron spectroscopy, wide- and small-angle X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and N2 adsorption-desorption experiments, and the results showed that the Fe species were highly dispersed on the surface of the PEG-modified support. At the same time, the PEG modification resulted in an increase in the Brunauer-Emmett-Teller surface area and pore volume. The catalytic activity test showed that the Fe/PEG-modified γ-Al2O3 catalyst exhibited a superior performance for the degradation of phenol wastewater in this study, and the phenol and COD removal values reached 94.1 and 88.9%, respectively, within 60 min. The results clearly show that PEG modification is a promising methodology for the preparation of a catalyst with good dispersal of the active component on the support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R. J., & Hashib, M. A. (2010). Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination, 261(1–2), 3–18.

    Article  CAS  Google Scholar 

  • Antolini, E. (2016). Structural parameters of supported fuel cell catalysts: the effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Applied Catalysis B: Environmental, 181, 298–313.

    Article  CAS  Google Scholar 

  • Babuponnusami, A., & Muthukumar, K. (2011). Degradation of phenol in aqueous solution by Fenton, sono-Fenton and sono-photo-Fenton methods. Clean-Soil Air Water, 39(2), 142–147.

    Article  CAS  Google Scholar 

  • Bao, Z., Ye, L., Fang, B., & Zhao, L. (2017). Synthesis of Fe0.32Co0.68/γ-Al2O3@C nanocomposite for depth treatment of dye sewage based on adsorption and advanced catalytic oxidation. Journal of Materials Chemistry A, 5(14), 6664–6676.

    Article  CAS  Google Scholar 

  • Bell, A. T. (2003). The impact of nanoscience on heterogeneous catalysis. Science, 299(5613), 1688–1691.

    Article  CAS  Google Scholar 

  • Boukhatem, H., Khalaf, H., Djouadi, L., Gonzalez, F. V., Navarro, R. M., Santaballa, J. A., & Canle, M. (2017). Photocatalytic activity of mont-La (6%)-Cu0.6Cd0.4S catalyst for phenol degradation under near uv visible light irradiation. Applied Catalysis B: Environmental, 211, 114–125.

    Article  CAS  Google Scholar 

  • Carriazo, J., Guelou, E., Barrault, J., Tatibouet, J. M., Molina, R., & Moreno, S. (2005). Catalytic wet peroxide oxidation of phenol by pillared clays containing al-Ce-Fe. Water Research, 39(16), 3891–3899.

    Article  CAS  Google Scholar 

  • Chen, Y., He, J., Wang, Y. Q., Kotsopoulos, T. A., Kaparaju, P., & Zeng, R. J. (2016). Development of an anaerobic co-metabolic model for degradation of phenol, m-cresol and easily degradable substrate. Biochemical Engineering Journal, 106, 19–25.

    Article  CAS  Google Scholar 

  • Cheng, H., Chou, S., Chen, S., & Yu, C. (2014). Photoassisted Fenton degradation of phthalocyanine dyes from wastewater of printing industry using Fe(II)/γ-Al2O3 catalyst in up-flow fluidized-bed. Journal of Environmental Sciences, 26(6), 1307–1312.

    Article  CAS  Google Scholar 

  • Chong, S., Zhang, G., Zhang, N., Liu, Y., Zhu, J., Huang, T., & Fang, S. (2016). Preparation of FeCeOx by ultrasonic impregnation method for heterogeneous Fenton degradation of diclofenac. Ultrasonics Sonochemistry, 32, 231–240.

    Article  CAS  Google Scholar 

  • Comotti, M., Li, W. C., Spliethoff, B., & Schüth, F. (2006). Support effect in high activity gold catalysts for CO oxidation. Journal of the American Chemical Society, 128(3), 917–924.

    Article  CAS  Google Scholar 

  • Dang, T. T. T., Le, S. T. T., Channei, D., Khanitchaidecha, W., & Nakaruk, A. (2016). Photodegradation mechanisms of phenol in the photocatalytic process. Research on Chemical Intermediates, 42(6), 5961–5974.

    Article  CAS  Google Scholar 

  • EL-Mekkawi, D. M., Galal, H. R., Abd, E. L., Wahab, R. M., & Mohamed, W. A. A. (2016). Photocatalytic activity evaluation of TiO nanoparticles based on COD analyses for water treatment applications: a standardization attempt. International Journal of Environmental Science & Technology, 13(4), 1077–1088.

    Article  CAS  Google Scholar 

  • Feng, Y. B., Hong, L., Liu, A. L., Chen, W. D., Li, G. W., Chen, W., & Xia, X. H. (2015). High-efficiency catalytic degradation of phenol based on the peroxidase-like activity of cupric oxide nanoparticles. International Journal of Environmental Science & Technology, 12, 653–660.

    Article  CAS  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3–4), 501–551.

    Article  CAS  Google Scholar 

  • Hermosilla, D., Merayo, N., Gascó, A., & Blanco, Á. (2015). The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review. Environmental Science and Pollution Research, 22(1), 168–191.

    Article  CAS  Google Scholar 

  • Hou, Z., Theyssen, N., & Leitner, W. (2007). Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide. Green Chemistry, 9(2), 127–132.

    Article  CAS  Google Scholar 

  • Hsieh, S., & Lin, P. (2012). FePt nanoparticles as heterogeneous Fenton-like catalysts for hydrogen peroxide decomposition and the decolorization of methylene blue. Journal of Nanoparticle Research, 14, 956–966.

    Article  Google Scholar 

  • Hu, Y., Wu, P., Yin, Y., Zhang, H., & Cai, C. (2012). Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Applied Catalysis B: Environmental, 111-112, 208–217.

    Article  CAS  Google Scholar 

  • Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35(2), 402–417.

    Article  CAS  Google Scholar 

  • Leong, S., Li, D., Hapgood, K., Zhang, X., & Wang, H. (2016). Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Applied Catalysis B: Environmental, 198(5), 224–233.

    Article  CAS  Google Scholar 

  • Li, X., Zhao, R., Sun, B., Lu, X., Zhang, C., Wang, Z., & Wang, C. (2014). Fabrication of a-Fe2O3-g-Al2O3 core-shell nanofibers and their Cr(VI) adsorptive properties. RSC Advances, 4(80), 42376–42382.

    Article  CAS  Google Scholar 

  • Liang, X., Zhong, Y., He, H., Yuan, P., Zhu, J., Zhu, S., & Jiang, Z. (2012). The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 191(15), 177–184.

    Article  CAS  Google Scholar 

  • Lu, M., Yao, Y., Gao, L., Mo, D., Lin, F., & Lu, S. (2015). Continuous treatment of phenol over an Fe2O3/γ-Al2O3 catalyst in a fixed-bed reactor. Water Air & Soil Pollution, 226(4), 87–99.

    Article  Google Scholar 

  • Lv, H., Mu, S., Cheng, N., & Pan, M. (2010). Nano-silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon. Applied Catalysis B: Environmental, 100(1–2), 190–196.

    Article  CAS  Google Scholar 

  • Morris, S. M., Fulvio, P. F., & Jaroniec, M. (2008). Ordered mesoporous alumina-supported metal oxides. Journal of the American Chemical Society, 130(45), 15210–15216.

    Article  CAS  Google Scholar 

  • Rodríguez-Chueca, J., Amor, C., Silva, T., Dionysiou, D. D., Puma, G. L., Lucas, M. S., & Peres, J. A. (2017). Treatment of winery wastewater by sulphate radicals: HSO5 /transition metal/UV-A LEDs. Chemical Engineering Journal, 310(15), 473–483.

    Article  Google Scholar 

  • Silvestre, C. I. C., Frigerio, C., Santos, J. L. M., & Lima, J. L. F. C. (2011). Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system. Analytica Chimica Acta, 69(2), 193–197.

    Article  Google Scholar 

  • Taketa, L. Y., Ignachewski, F., Villalba, J. C., Anasissi, F. J., & Fujiwara, S. T. (2015). Phenol degradation using the mixed material clay/Fe immobilized on glass slides. Environmental Science and Pollution Research, 22(2), 894–902.

    Article  CAS  Google Scholar 

  • Tireli, A. A., Guimaraes, I. R., Terra, J. C. S., Silva, R. R. D., & Guerreiro, M. C. (2015). Fenton-like processes and adsorption using iron oxide-pillared clay with magnetic properties for organic compound mitigation. Environmental Science and Pollution Research, 22(2), 870–881.

    Article  CAS  Google Scholar 

  • Vittenet, J., Aboussaoud, W., Mendret, J., Pic, J. S., Debellefontaine, H., Lesage, N., Faucher, K., Manero, M. H., Thibault-Starzyk, F., & Leclerc, H. (2015). Catalytic ozonation with γ-Al2O3 to enhance the degradation of refractory organics in water. Applied Catalysis A: General, 504(5), 519–532.

    Article  CAS  Google Scholar 

  • Wang, Y., Lin, X., Shao, Z., Shan, D., Li, G., & Irini, A. (2017). Comparison of Fenton, UV-Fenton and nano-Fe3O4 catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: role of complexation of Fe3+ with hydroxyl group in phloroglucinol. Chemical Engineering Journal, 313(1), 938–945.

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, J., Zou, H., & Xie, Y. (2016). Heterogeneous activation of hydrogen peroxide using γ-Al2O3 supported bimetallic Fe, Mn for the degradation of reactive black 5. RSC Advances, 6(19), 15394–15401.

    Article  CAS  Google Scholar 

  • Yang, X. J., Xu, X. M., Xu, J., & Han, Y. F. (2013). Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. Journal of the American Chemical Society, 135(43), 16058–16061.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, X., & Wang, Y. (2016). Degradation of phenol by heterogeneous photo-Fenton process using Fe/Cu/Al catalyst. RSC Advances, 6(16), 13168–13176.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Natural Science Research Key Project of the Anhui Provincial Department of Education (Grant KJ2015A231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Ding, K. & Ding, B. The Effect of Polyethylene Glycol (PEG) Modification on Fe Dispersal and the Catalytic Degradation of Phenol Wastewater. Water Air Soil Pollut 228, 442 (2017). https://doi.org/10.1007/s11270-017-3632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3632-x

Keywords

Navigation